首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高轨卫星轨道预报中神经网络模型优化设计   总被引:1,自引:0,他引:1  
高轨卫星是我国卫星导航系统的重要组成部分。提升该类卫星的轨道预报精度有利于用户定位精度的提高。提出了一种改进高轨卫星轨道预报精度的新方法。该方法避开了精化动力学模型的困难,尝试从轨道预报误差的规律中寻找突破。利用神经网络作为建立预报模型的工具,将某历史时刻的轨道预报误差作为训练样本,利用训练好的神经网络模型补偿当前时刻的预报轨道以提高轨道预报精度。对影响神经网络模型补偿效果的各因素进行了详细分析,制定了适应于高轨卫星短期、中期和长期预报的神经网络最优模型。利用实测数据进行了试验分析,结果表明:预报8,15及30 d应选择的训练步长分别为10,20及25 min;轨道预报8~30 d时,训练噪声均选取0.01。神经网络模型有效地改进了高轨卫星的轨道预报精度,预报4~30 d,轨道精度提高幅度为34.67%~82.37%不等。  相似文献   

2.
针对利用动力学模型得到的预报轨道随时间推移精度衰减较快的问题,尝试采用神经网络作为建模工具改进北斗导航卫星轨道预报精度。对影响神经网络模型补偿效果的因素进行了详细分析,基于神经网络补偿波形调整策略制定了适应导航卫星短期、中期和长期预报的神经网络优化模型。利用实测数据进行了试验分析,结果表明,该方法可以显著改进利用动力学模型得到的预报轨道精度。短期预报中,当采用的训练样本距离当前时刻大于10 d时,应移动补偿波形;中长期预报中均应移动补偿波形。相比补偿波形不调整的神经网络模型,采用基于补偿波形调整的神经网络优化模型后,预报弧长为8、15、30 d时,改进率分别提高了2.3%、6.7%、10%。  相似文献   

3.
基于神经网络混合建模的思想提出一种针对导航卫星的中长期轨道预报方法,在原动力学模型的基础上引入神经网络模型作为补偿,从而获得新的预报模型。在训练过程中神经网络通过学习动力学模型轨道预报误差来掌握其变化规律,并在预报过程中为动力学模型预报提供补偿,以提高预报精度。对GPS卫星动力学模型中长期预报误差的特点进行分析,然后根据所得结论提出混合模型的中长期(15 d以上)预报方案,最后通过对GPS卫星的仿真试验证明混合模型的改进效果,结果表明新方法在15~40 d的预报上表现出很好的改进效果。  相似文献   

4.
针对导航星座自主定轨,提出一种提高集中式算法效率的新思路,即充分利用高频、高精度的星间链路测距信息,在短弧内将卫星最优轨道与长期预报轨道的差异用多次曲线描述,得到卫星位置和速度的最佳估值。此方法无需动力学建模和计算状态转移矩阵,因此算法极为简洁。同时,对于自主运行期间缺乏空间基准,提出约束轨道升交点赤经的方法,以减小对地面系统的依赖程度。仿真结果表明,导航星座自主运行60 d,不考虑地球自转参数(EOP)长期预报误差,在无锚固站的情况下,链路数不少于5条时能够达到轨道URE优于1 m,位置3 m,速度毫米级的定轨精度。最后,通过比对验证了新算法比已有EKF分布式自主定轨算法的效率更高。  相似文献   

5.
针对动力学模型预报轨道误差随弧长增加而发散的问题,用深度学习长短期记忆神经网络模型对预报误差进行补偿,且对LSTM模型逐点迭代产生的误差积累问题,提出了总体经验模态分解和LSTM模型组合的EEMD-LSTM预报模型。采用LSTM模型补偿GEO、IGSO和MEO轨道误差较BP神经网络更能完备地学习误差特性,在短、中和长期预报中,两者均方根误差差值随预报弧长增大而增大,同时误差平均改进率■也明显提高,30 d内预报中增大的■高达28.6%。且EEMD-LSTM模型较好地抑制LSTM模型误差累积,在中长期的预报中RMSE和■的差值再变化,前者高达到21.13 m,后者高达到4.24%。EEMD-LSTM组合模型补偿功能的实现对未来GNSS卫星轨道预报方法研究提供了一种参考。  相似文献   

6.
GEO卫星频繁的轨道机动对高精度、实时不间断的导航服务需求提出了更高要求。针对该问题,提出了基于机动力模型的轨道确定与外推方法,尝试利用机动期间的卫星推力信息建立机动力模型。从而实现连续的动力学定轨,保证了机动期间导航服务的实时性和高精度要求。利用北斗系统中GEO卫星实测数据进行了定轨试验与分析。结果表明:采用基于已知机动力模型的轨道位置确定精度优于50 m,明显优于目前几何法定轨的精度,为机动期间导航卫星定轨提供一种的新技术思路,对于提高导航服务精度和连续性具有一定的参考意义。  相似文献   

7.
GNSS卫星定轨精度主要取决于卫星动力学模型精度和GNSS几何观测信息。由于北斗GEO/IGSO卫星静地、高轨特性,以及力学模型不精确等原因,地面几何观测信息对轨道改进至关重要。本文讨论了北斗GEO/IGSO/MEO卫星定轨地面站分布影响及优化改进方法。在简化动力学定轨模型基础上,探讨多历元几何观测信息累积对轨道的改进;研究了北斗导航卫星定轨理想几何构型条件,得到影响定轨精度的几何因子,包括测站数量、覆盖范围、分布密度;利用离散概率密度方法研究地面站构型,分析了3类卫星轨道改进机理和优化方法。通过算例,讨论了增加5个中国区域基准站改善离散概率密度指标,优化全球北斗卫星定轨构型,发现GEO和IGSO卫星精度改善最为明显,MEO卫星改善最小;其中GEO卫星提高了10%,IGSO卫星提高了16%,MEO卫星提高了4%。  相似文献   

8.
EOP预报误差对导航卫星轨道预报的影响分析   总被引:1,自引:0,他引:1  
导航卫星轨道预报是利用精密定轨结果在惯性系下进行轨道外推,再将外推得到的惯性系轨道转换为地固系轨道,然后生成卫星星历数据。由于坐标系转换时使用的是带有误差的地球定向参数(EOP:Earth Orientation Parameters)预报值,转换结果会产生误差,进而影响轨道预报结果的精度。分析了EOP快速预报产品公报A的预报精度,研究了参数预报误差对轨道预报精度的影响。结果表明,对于利用GPS精密星历外推模拟得到的卫星轨道而言,EOP预报1天引起的轨道预报误差大致分布在0.232±0.183m,参数预报7天引起的轨道预报误差大致分布在0.438±0.356m。  相似文献   

9.
针对区域跟踪网不能覆盖导航卫星全弧段从而导致卫星定轨精度低的问题,简述了导航卫星和低轨卫星联合定轨模型,然后利用星地跟踪网观测数据同时确定了低轨卫星和导航卫星精密轨道,并根据实验结果详细分析了低轨卫星在联合定轨中所起到的作用。计算结果表明,引入低轨卫星之后,全球网和区域网定轨精度分别平均提高了20.0%和44.3%,区域网6h和24h的轨道预报精度分别优于10cm、13cm,利用星地跟踪网观测数据联合定轨方案是一种提高定轨精度并削弱对地面站依赖性的有效方法。  相似文献   

10.
地球静止轨道(GEO)卫星频繁的轨道机动对高精度、实时不间断的导航服务需求提出新的更高要求,如何在短弧跟踪条件下提高GEO卫星轨道快速恢复能力,是提升导航系统服务精度的关键因素。针对该问题,提出基于9参数星历拟合的GEO卫星短弧运动学定轨方法,详细推导定轨的数学模型与偏导模型,针对GEO卫星星历参数拟合中的奇异问题,提出相应的解决方法和措施。利用COMPASS GEO卫星实测自发自收数据进行短弧定轨试验与分析,结果表明:①10 min短弧运动学定轨的位置精度优于19 m,速度精度为4 mm/s,速度精度明显优于MEO卫星;②预报5 min的位置精度为17.760 m,预报10 min的位置精度为18.168 m;③解决GEO卫星频繁轨控所带来的轨道快速恢复问题,满足短弧跟踪条件下RDSS的服务需求。  相似文献   

11.
全球卫星导航定位系统是20世纪80年代出现的最具划时代意义的航天技术和信息技术,其开发和应用研究已经成为世界各大国发展战略中高技术竞争的一个主要焦点。在卫星导航系统的研究中,导航星座轨道的精密确定和预报技术是保证卫星导航系统正常运行最核心的关键技术。导航星座的轨道精度是衡量卫星导航系统性能的一个重要指标,而利用导航星座进行低轨卫星精密定轨是导航卫星应用领域的最前沿、最具战略性的方向,高精度的低轨卫星轨道是提高卫星应用水平的基础。基于星载GPS数据的低轨卫星精密定轨一直是国际上的一个研究热点,也是我国提高低轨卫星精密定轨精度的最为有效的手段,但我国还鲜有高精度成果报道。因此,加大该领域的研究力度,建立自主产权的卫星导航数据综合处理软件势在必行。  相似文献   

12.
以GPS卫星为例,提出了一种太阳光压模型精化方法。该方法能使卫星升交点赤经及轨道倾角在180d内的预报误差控制在±40mas左右,较显著地提高了自主定轨卫星轨道的切向和法向精度,最终改善了用户测距误差,对卫星轨道径向改善不明显,对钟差项几乎没有影响。  相似文献   

13.
利用GRACE卫星的实测数据研究了重力卫星精密定轨问题;针对简化动力学精密定轨方法给出了一种有效的星载数据编辑、处理策略.编制了相应的软件,并利用该软件处理了GRACE-B卫星3 d的实测数据;通过与JPL公布的轨道导航解比较,以及激光观测值检验的方式分析了卫星轨道的精度.结果显示,利用简化动力学定轨方法解算的轨道精度在6 cm以内,能够满足重力场反演对轨道精度的要求.  相似文献   

14.
基于卫星激光测距定轨是目前遥感卫星在轨位置测量的重要手段之一,其测量精度关系到遥感卫星的应用水平。为了分析我国首颗民用立体测绘卫星——资源三号携带的国产激光角反射器在轨运行情况,该文利用全球激光联测期间卫星激光测距数据与GPS事后联合定轨结果,从遥感影像几何定位和轨道预报两个方面定量分析和评价卫星激光测距参与的定轨精度。试验表明,基于卫星激光测距与GPS定轨结果,影像几何定位无控精度较实时定轨精度提升1~2m,有效提升了卫星影像几何处理精度;轨道预报1d星下点位置较实际过境轨迹偏差优于250m,2d优于500m,1d预报侧摆精度达到0.035°,满足检校外业和成像计划精度需求。  相似文献   

15.
基于伪距及载波相位观测量的COMPASS-M1卫星精密定轨中轨道误差与钟差分离问题是制约卫星定轨精度提高的主要因素之一。本文首先介绍了基于监测站时间同步条件下精密定轨原理,然后通过对卫星钟差建模,采用动力学方法利用国内五站实测数据对COMPASS-M1卫星进行了轨道确定,并利用轨道重叠弧段法及实测激光数据对定轨精度作了检核。结果表明,基于目前监测站时间同步技术,利用相位平滑伪距定轨能达到10m以内精度。  相似文献   

16.
分析了脉冲经验力和分段线性经验力两种机动力模型在GEO卫星机动期间定轨和机动后轨道预报中的适用性,同时比较了两种机动力建模方法与短弧动力学方法之间在轨道预报方面的优劣。实验结果表明,在机动定轨中,脉冲经验力模型比分段线性模型更优越。两种机动力建模方法东西机动期间单天弧段轨道拟合精度可优于5m,但线性模型轨道预报精度比脉冲经验力模型和短弧动力学方法差。C波段观测量能够改善机动期间定轨精度。  相似文献   

17.
多星定轨条件下北斗卫星钟差的周期性变化   总被引:1,自引:1,他引:0  
周佩元  杜兰  路余  方善传  张中凯  杨力 《测绘学报》2015,44(12):1299-1306
基于地面监测网的多星精密定轨可以同时解算出北斗卫星轨道和卫星钟差。由于轨道和钟差的耦合影响,卫星钟差时序难免会出现周期性波动。此外,受限于目前并不完善的北斗全球监测网络分布、系统导航文件缺失以及定轨后处理软件的设置问题,3类卫星的钟差均存在大量数据间断问题。本文利用适用于间断数据的谱分析方法,对多星定轨条件下的北斗卫星钟差数据进行了周期项提取,并利用周期项改进后的钟差预报模型评估了24h以内的预报精度。基于近一年的数据分析表明,北斗GEO卫星钟差3个主周期依次为12、24和8h,IGSO卫星钟差的3个主周期依次为24、12和8h,而MEO卫星钟差的3个主周期依次为12.91、6.44和24h。与改进前相比,周期项改进后的钟差预报模型将北斗卫星钟差在24h以内的预报精度提高了20%~40%。  相似文献   

18.
我国COMPASS卫星导航系统利用GEO卫星作为导航星座。由于GEO卫星要进行位置保持及倾角保持,需要定期进行轨道机动,因此,如何实现机动期间的精密定轨及轨道预报是COMPASS导航系统正常运行需要解决的问题。本文利用国内基于C波段转发测距体制获取的实测GEO卫星机动期间测轨数据,分别用常数经验力模型、脉冲经验力模型、脉冲机动力模型、短弧动力学法进行机动期间动力学定轨试验,用轨道重叠弧段法、定轨残差分析法对四种模型轨道确定及预报效果进行评价。结果表明,脉冲力模型具有最好的轨道拟合及轨道预报效果;脉冲机动力模型尽管增加了解算参数,但对预报结果改善有限。  相似文献   

19.
2015年以来陆续发射入轨的北斗全球卫星导航系统(简称北斗三号系统,BeiDou global navigation satellite system,BDS-3)卫星,其姿态控制增加了连续动态偏置模式,为研究BDS-3卫星在地影期间的定轨精度提供了条件。首先利用ECOM (empirical CODE(Center for Orbit Determination in Europe) orbit model)系列模型评估了BDS-3卫星的光压摄动建模精度和定轨精度,同时以轨道重叠弧段精度、用户等效距离误差(user equivalent range error,UERE)、卫星激光测距(satellite laser ranging, SLR)残差和定位精度为指标,对基本导航模式下BDS-3卫星的定轨精度进行了评估。然后基于北斗60余天的实测数据进行了实验,结果表明,BDS-3卫星克服了区域系统卫星在姿态控制模式转换期间定轨精度下降的问题,其定轨精度与动态偏置期间定轨和预报精度相当,仅下降2~3 cm,定位精度下降1 cm,这与目前北斗的定轨精度和定位精度相比,可以忽略。进一步的分析表明,采用ECOM 5参数光压模型,连续动偏期间的轨道重叠弧段精度为0.26 m,预报2 h的UERE均方根降低至1.22 m,SLR残差的均方根小于0.31 m,大大提升了北斗系统的可用性。  相似文献   

20.
在动力学模型补偿算法的基础上,推导了星载GPS实时定轨的卡尔曼滤波模型。以此为理论基础,自主研制了星载GPS实时定轨软件SATODS。使用CHAMP卫星上的星载GPS实测伪距数据以及GPS卫星广播星历来模拟实时定轨数据处理,并将实时定轨结果与JPL精密轨道进行比较分析。结果表明,在滤波收敛后,实时定轨的轨道精度和速度精度的3dRMS分别可达到1.0m和1.2mm/s,受观测数据的GPS卫星数、PDOP值、粗差数据和数据中断等因素的影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号