首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT

A fractional vegetation cover (FVC) estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed, which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarse-resolution FVC pixel were all assumed to have the same vegetation growth model. However, this assumption does not hold over heterogeneous areas, meaning that the method cannot be applied to large regions. Therefore, this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite (GLASS) FVC product. The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data. Then, independent dynamic vegetation models were built for each finer-resolution pixel. Finally, the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale. Validation results indicated that the proposed method (R2?=?0.7757, RMSE?=?0.0881) performed better than either the previous method (R2?=?0.7038, RMSE?=?0.1125) or a commonly used method involving look-up table inversions of the PROSAIL model (R2?=?0.7457, RMSE?=?0.1249).  相似文献   

2.
ABSTRACT

Fractional green vegetation cover (FVC) is a useful indicator for monitoring grassland status. Satellite imagery with coarse spatial but high temporal resolutions has been preferred to monitor seasonal and inter-annual FVC dynamics in wide geographic area such as Mongolian steppe. However, the coarse spatial resolution can cause a certain uncertainty in the satellite-based FVC estimation, which calls attention to develop a robust statistical test for the relationship between field FVC and satellite-derived vegetation indices. In the arid and semi-arid Mongolian steppe, nadir pointing digital camera images (DCI) were collected and used to produce a FVC dataset to support the evaluation of satellite-based FVC retrievals. An optimal DCI processing method was determined with respect to three color spaces (RGB, HIS, L*a*b*) and six green pixel classification algorithms, from which a country-wide dataset of DCI-FVC was produced and used for evaluating the accuracy of satellite-based FVC estimates from MODIS vegetation indices. We applied three empirical and three semi-empirical MODIS-FVC retrieval models. DCI data were collected from 96 sites across the Mongolian steppe from 2012 to 2014. The histogram algorithm using the hue (H) value of the HIS color space was the optimal DCI method (r2 = 0.94, percent root-mean-square-error (RMSE) = 7.1%). For MODIS-FVC retrievals, semi-empirical Baret model was the best-performing model with the highest r2 (0.69) and the lowest RMSE (49.7%), while the lowest MB (+1.1%) was found for the regression model with normalized difference vegetation index (NDVI). The high RMSE (>50% or so) is an issue requiring further enhancement of satellite-based FVC retrievals accounting for key plant and soil parameters relevant to the Mongolian steppe and for scale mismatch between sampling and MODIS data.  相似文献   

3.
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.  相似文献   

4.
ABSTRACT

Inner Mongolia is an important ecological zone of northern China and 67% of its land area is grassland. This ecologically fragile region has experienced significant vegetation degradation during the last decades. Although the spatial extents and rates of vegetation change have previously been characterized through various remote sensing and GIS studies, the underlying driving factors of vegetation changes are still not well understood. In this study, we first used time-series MODIS NDVI data from 2000 to 2016 to characterize the temporal trend of vegetation changes. These vegetation change trends were compared with climate and socioeconomic variables to determine the potential drivers. We used a set of statistical methods, including multiple linear regression (MLR), spatial correlation analysis, and partial least squares (PLS) regression analyzes, to quantify the spatial distribution of the driving forces and their relative importance to vegetation changes. Results show that the main driving factors and their impact magnitude (weight) are in the order of human activities (r = -0.785, p < 0.01, VIP = 1.37), precipitation (r = 0.541, p < 0.05, VIP = 0.89), temperature (r = -0.319, p > 0.05 VIP = 0.59). The area affected by human activities was 10.57%. Specific human activities, such as coal mining and grazing were negatively associated with vegetation cover, while eco-engineering projects had positive impacts. This study provided thorough quantification of driving forces of vegetation change and enhanced our understanding of their interactions. Our integrated geospatial-statistical approach is particularly important for sustainable development of ecosystem balance in Chen Barag Banner and other areas facing similar challenges.  相似文献   

5.
We used geographic datasets and field measurements to examine the mechanisms that affect soil carbon (SC) storage for 65 grazed and non-grazed pastures in southern interior grasslands of British Columbia, Canada. Stepwise linear regression (SR) modeling was compared with random forest (RF) modeling. Models produced with SR performed better than those produced using RF models (r2 = 0.56–0.77 AIC = 0.16–0.30 for SR models; r2 = 0.38–0.53 and AIC = 0.18–0.30 for RF models). The factors most significant when predicting SC were elevation, precipitation, and the normalized difference vegetation index (NDVI). NDVI was evaluated at two scales using: (1) the MOD 13Q1 (250 m/16-day resolution) NDVI data product from the moderate resolution imaging spectro-radiometer (MODIS) (NDVIMODIS), and (2) a handheld multispectral radiometer (MSR, 1 m resolution) (NDVIMSR) in order to understand the potential for increasing model accuracy by increasing the spatial resolution of the gridded geographic datasets. When NDVIMSR data were used to predict SC, the percentage of the variance explained by the model was greater than for models that relied on NDVIMODIS data (r2 = 0.68 for SC for non-grazed systems, modeled with SR based on NDVIMODIS data; r2 = 0.77 for SC for non-grazed systems, modeled with SR based on NDVIMSR data). The outcomes of this study provide the groundwork for effective monitoring of SC using geographic datasets to enable a carbon offset program for the ranching industry.  相似文献   

6.
Soil organic carbon (SOC) is an important aspect of soil quality and plays an imperative role in soil productivity in the agriculture ecosystems. The present study was applied to estimate the SOC stock using space-borne satellite data (Landsat 4–5 Thematic Mapper [TM]) and ground verification in the Medinipur Block, Paschim Medinipur District and West Bengal in India. In total, 50 soil samples were collected randomly from the region according to field surveys using a hand-held Global Positioning System (GPS) unit to estimate the surface SOC concentrations in the laboratory. Bare soil index (BSI) and normalized difference vegetation ndex (NDVI) were explored from TM data. The satellite data-derived indices were used to estimate spatial distribution of SOC using multivariate regression model. The regression analysis was performed to determine the relationship between SOC and spectral indices (NDVI and BSI) and compared the observed SOC (field measure) to predict SOC (estimated from satellite images). Goodness fit test was performed to determine the significance of the relationship between observed and predicted SOC at p ≤ 0.05 level. The results of regression analysis between observed SOC and NDVI values showed significant relationship (R2 = 0.54; p < 0.0075). A significant statistical relationship (r = ?0.72) was also observed between SOC and BSI. Finally, our model showed nearly 71% of the variance of SOC distribution could be explained by SOC and NDVI values. The information from this study has advanced our understanding of the ongoing ecological development that affects SOC dissemination and might be valuable for effective soil management.  相似文献   

7.
Soil erosion rates in alpine regions are related to high spatial variability complicating assessment of risk and damages. A crucial parameter triggering soil erosion that can be derived from satellite imagery is fractional vegetation cover (FVC). The objective of this study is to assess the applicability of normalized differenced vegetation index (NDVI), linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) in estimating abundance of vegetation cover in alpine terrain. To account for the small scale heterogeneity of the alpine landscape we used high resolved multispectral QuickBird imagery (pixel resolution = 2.4 m) of a site in the Urseren Valley, Central Swiss Alps (67 km2). A supervised land-cover classification was applied (total accuracy 93.3%) prior to the analysis in order to stratify the image. The regression between ground truth FVC assessment and NDVI as well as MTMF-derived vegetation abundance was significant (r2 = 0.64, r2 = 0.71, respectively). Best results were achieved for LSU (r2 = 0.85). For both spectral unmixing approaches failed to estimate bare soil abundance (r2 = 0.39 for LSU, r2 = 0.28 for MTMF) due to the high spectral variability of bare soil at the study site and the low spectral resolution of the QuickBird imagery. The LSU-derived FVC map successfully identified erosion features (e.g. landslides) and areas prone to soil erosion. FVC represents an important but often neglected parameter for soil erosion risk assessment in alpine grasslands.  相似文献   

8.
Detection of crop water stress is crucial for efficient irrigation water management. Potential of Satellite data to provide spatial and temporal dynamics of crop growth conditions makes it possible to monitor crop water stress at regional level. This study was conducted in parts of western Uttar Pradesh and Haryana. Multi-temporal Landsat data were used for detecting wheat crop water stress using vegetation indices (VIs), viz. vegetation water stress index (VWSI) and land surface wetness index water stress factor (Ws_LSWI). The estimated water stress from satellite data-based VIs was validated by water stress factor (Ws) derived from flux-tower data. The study observed Ws_LSWI to be better index for water stress detection. The results indicated that Ws_LSWI was superior over other index showing RMSE = 0.12, R2 = 0.65, whereas VWSI showed overestimated values with mean RD 4%.  相似文献   

9.
An assessment of gully erosion along road drainage-release sites is critical for understanding the contribution of roads to soil loss and for informed land management practices. Considering that road-related gully erosion has traditionally been measured using field methods that are expensive, tedious and limited spatially as well as temporally, it is important to identify affordable, timely and robust methods that can be used to effectively map and estimate the volume of gullies along the road networks. In this study, gullies along major roads were identified from remotely sensed data sets and their volumes were estimated in a Geographic Information Systems environment. Also, the biophysical and climatic factors such as vegetation cover, the road contributing surface area, the gradient of the discharge hillslope and rainfall were derived from remotely sensed data sets using Geographic Information Systems techniques to find out whether they could explain the morphology of gullies that existed in this area. The results of this study indicate that hillslope gradient (R2?=?0.69, α = 0.00) and road contributing surface area (R2?=?0.63, α = 0.00) have a strong influence on the volume of gullies along the major roads in the south-eastern region of South Africa, as might have been expected. However, other factors such as vegetation cover (R2 = 0.52, α = 0.00) and rainfall (R2 = 0.41 and α = 0.58) have a moderately weaker influence on the overall volume of gullies. Overall, the findings of this study highlight the importance of using remote sensing and Geographic Information Systems technologies in investigating gully erosion occurrence along major roads where detailed field work remains a challenge.  相似文献   

10.
Detecting soil salinity changes and its impact on vegetation cover are necessary to understand the relationships between these changes in vegetation cover. This study aims to determine the changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and investigates whether the salinity change causing the change in vegetation cover. Landsat time series data of years 1985, 2000 and 2013 were used to generate Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity during 2000–2013 exhibits much higher increase compared to 1985–2000, while the vegetation cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) negative relationships found between the NDVI and SI differencing images, confirmed the potential long-term linkage between the changes in soil salinity and vegetation cover.  相似文献   

11.
Fractional vegetation cover (FVC) is an important indicator of mountain ecosystem status. A study on the seasonal changes of FVC can be beneficial for regional eco-environmental security, which contributes to the assessment of mountain ecosystem recovery and supports mountain forest planning and landscape reconstruction around megacities, for example, Beijing, China. Remote sensing has been demonstrated to be one of the most powerful and feasible tools for the investigation of mountain vegetation. However, topographic and atmospheric effects can produce enormous errors in the quantitative retrieval of FVC data from satellite images of mountainous areas. Moreover, the most commonly used analysis approach for assessing FVC seasonal fluctuations is based on per-pixel analysis regardless of the spatial context, which results in pixel-based FVC values that are feasible for landscape and ecosystem applications. To solve these problems, we proposed a new method that incorporates the use of a revised physically based (RPB) model to correct both atmospheric and terrain-caused illumination effects on Landsat images, an improved vegetation index (VI)-based technique for estimating the FVC, and an adaptive mean shift approach for object-based FVC segmentation. An array of metrics for segmented FVC analyses, including a variety of area metrics, patch metrics, shape metrics and diversity metrics, was generated. On the basis of the individual segmented FVC values and landscape metrics from multiple images of different dates, remote sensing of the seasonal variability of FVC was conducted over the mountainous area of Beijing, China. The experimental results indicate that (a) the mean value of the RPB–NDVI in all seasons was increased by approximately 10% compared with that of the atmospheric correction-NDVI; (b) a strong consistency was demonstrated between ground-based FVC observations and FVC estimated through remote sensing technology (R2 = 0.8527, RMSE = 0.0851); and (c) seasonal changes in the landscape characteristics existed, and the landscape diversity reached its maximum in May and June in the study area.  相似文献   

12.
Gonipterus scutellatus outbreaks may severely defoliate Eucalyptus plantations growing in South Africa. Therefore, detecting and mapping the severity and extent of G. scutellatus defoliation is essential for the deployment of suppressive measures. In this study, we tested the utility of spatially optimized vegetation indices and an artificial neural network in detecting and mapping G. scutellatus-induced vegetation defoliation, using both visual estimates of percentage defoliation and optical leaf area index (LAI) measures. We tested both field methods to determine which of the two were more superior in detecting vegetation defoliation using optimized vegetation indices. These indices were computed from a WorldView-2 pan-sharpened image, which is characterized with a 0.5-m spatial resolution and eight spectral bands. The indices were resampled to spatial resolutions that best represented levels of G. scutellatus-induced defoliation. The results showed that levels of defoliation, using visual percentage estimates, were detected with an R2 of 0.83 and an RMSE of 1.55 (2.97% of the mean measured defoliation), based on an independent test data-set. Similarly, LAI subjected to defoliation was detected with an R2 of 0.80 and an RMSE of 0.03 (0.06% of the mean measured LAI), based on an independent test data-set. Therefore, the results indicate that the cheaper less-complicated visual percentage estimates of defoliation was the more superior model of the two. A sensitivity analysis revealed that NDRE, MCARI2 and ARI ranked as the top three most influential indices in developing both percentage defoliation and LAI models. Furthermore, we compared the optimized model with a model developed using the original image spatial resolution. The results indicated that the optimized model performed better than the original 0.5-m spatial resolution model. Overall, the study showed that vegetation indices optimized to specific spatial resolutions can effectively detect and map levels of G. scutellatus-induced defoliation and LAI subjected to defoliation.  相似文献   

13.
This paper evaluates the renaturation activities applying the quantification of vegetation cover (VC), the site suitability analysis (SSA) based on the predefined criteria (slope steepness category (SSC), soil erodibility factor (K) and VC) and soil erosion model (SEM) results within the terrain units (TUs) along pipeline rights-of-way (RoW). Quantification of VC percentage is performed to assess the overall restored VC from 2005 to 2007. The results of the quantitative analysis in 2007 show that the total area of restored VC is 10.7 km2, and 8.9 km2 still needs to be restored to comply with the environmental acceptance criteria. As a result of SSA, TUs were prioritized by erosion vulnerability and this allowed to better understand the landscape behaviour in regards to erosion processes. SEM provided more detailed predictions of erosion classes falling into TUs. SEM identified 40% of erosion sites occurred from 2005 to 2010.  相似文献   

14.
The purpose of this study is to estimate long-term SMC and find its relation with soil moisture (SM) of climate station in different depths and NDVI for the growing season. The study area is located in agricultural regions in the North of Mongolia. The Pearson’s correlation methodology was used in this study. We used MODIS and SPOT satellite data and 14 years data for precipitation, temperature and SMC of 38 climate stations. The estimated SMC from this methodology were compared with SM from climate data and NDVI. The estimated SMC was compared with SM of climate stations at a 10-cm depth (r2 = 0.58) and at a 50-cm depth (r2 = 0.38), respectively. From the analysis, it can be seen that the previous month’s SMC affects vegetation growth of the following month, especially from May to August. The methodology can be an advantageous indicator for taking further environmental analysis in the region.  相似文献   

15.
基于ASTER GED产品的地表发射率估算   总被引:1,自引:0,他引:1  
地表发射率是地表温度反演的重要输入参数,为了解决现有地表发射率估算方法在裸露地表精度较差的问题,本文基于最新的ASTER全球地表发射率产品(ASTER GED)和基于植被覆盖度的方法(VCM),提出了一个改进的地表发射率估算方法。首先,利用ASTER GED产品求解裸土发射率,然后,利用ASTER波谱库中的植被发射率和植被覆盖度结合VCM方法计算地表发射率。利用张掖地区2012年11景ASTER TES算法反演的地表发射率产品和实测地表发射率数据进行了验证,同时利用一景Landsat 8 TIRS数据分析了对地表温度反演精度的影响。结果表明该方法估算的地表发射率整体精度较高,可以有效改进裸露地表的发射率估算精度,用于支持利用多种热红外传感器数据生产高精度的地表温度产品。  相似文献   

16.
草原矿区长时序植被覆盖度变化趋势对比分析   总被引:8,自引:2,他引:6  
呼伦贝尔草原区生态脆弱,在人类活动和气候等因素影响下草原生态变化备受关注。本文以宝日希勒矿区及周边为研究区,应用1985-2015年Landsat年度最大合成NDVI数据,采用像元二分模型反演植被覆盖度;分别利用一元线性回归法和Sen+Mann-Kendall法对研究区植被覆盖度趋势和空间差异进行了对比分析。结果表明:两种方法得到的植被变化趋势基本一致,Sen+Mann-Kendall方法相较于一元线性回归法对植被覆盖度改善和退化反应更为敏感。研究结果有助于科学评价长时序煤炭开发活动对地表生态的影响并为长时序植被变化监测提供方法参考。  相似文献   

17.
Quantitative estimations of the fractional cover of photosynthetic vegetation (fPV), non-photosynthetic vegetation (fNPV) and bare soil (fBS) are critical for soil wind erosion, desertification, grassland grazing, grassland fire, and grassland carbon storage studies. At present, regional and large-scale fPV, fNPV and fBS estimations have been carried out in many areas. However, few studies have used moderate resolution imaging spectroradiometer (MODIS) data to perform large-scale, long-term fPV, fNPV and fBS estimations in the Xilingol grassland of China. The objective of this study was to quantitatively estimate the time series of fPV, fNPV and fBS in the typical grassland region of Xilingol from MODIS image data. Field measurement spectral and coverage data from May and September 2017 were combined with the 8-day composite product (MOD09A1) acquired during 2017. We established an empirical linear model of different non-photosynthetic vegetation indices (NPVIs) and fNPV based on the sample scale. The linear correlation between the dead fuel index (DFI) and fNPV was best (R2 = 0.60, RMSE = 0.15). A normalized difference vegetation index (NDVI)-DFI model based on MODIS data was proposed to accurately estimate the fPV, fNPV and fBS (estimation accuracies of 44%, 71%, and 74%, respectively) in the typical grasslands of Xilingol in China. The fPV, fNPV and fBS values for the typical grassland time series estimated by the NDVI-DFI model were consistent with the phenological characteristics of the grassland vegetation. The results show that the application of the NDVI-DFI model to the Xilingol grassland is reasonable and appropriate, and it is of great significance to the monitoring of soil wind erosion and fires in grasslands.  相似文献   

18.
Monthly time series, from 2001 to 2016, of the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) from MOD13Q1 products were analyzed with Seasonal Trend Analysis (STA), assessing seasonal and long-term changes in the mangrove canopy of the Teacapan-Agua Brava lagoon system, the largest mangrove ecosystem in the Mexican Pacific coast. Profiles from both vegetation indices described similar phenological trends, but the EVI was more sensitive in detecting intra-annual changes. We identified a seasonal cycle dominated by Laguncularia racemosa and Rhizophora mangle mixed patches, with the more closed canopy occurring in the early autumn, and the maximum opening in the dry season. Mangrove patches dominated by Avicennia germinans displayed seasonal peaks in the winter. Curves fitted for the seasonal vegetation indices were better correlated with accumulated precipitation and solar radiation among the assessed climate variables (Pearson’s correlation coefficients, estimated for most of the variables, were r ≥ 0.58 p < 0.0001), driving seasonality for tidal basins with mangroves dominated by L. racemosa and R. mangle. For tidal basins dominated by A. germinans, the maximum and minimum temperatures and monthly precipitation fit better seasonally with the vegetation indices (r ≥ 0.58, p < 0.0001). Significant mangrove canopy reductions were identified in all the analyzed tidal basins (z values for the Mann-Kendall test ≤ ?1.96), but positive change trends were recorded in four of the basins, while most of the mangrove canopy (approximately 87%) displayed only seasonal canopy changes or canopy recovery (z > ?1.96). The most resilient mangrove forests were distributed in tidal basins dominated by L. racemosa and R. mangle (Mann-Kendal Tau t ≥ 0.4, p ≤ 0.03), while basins dominated by A. germinans showed the most evidence of disturbance.  相似文献   

19.
The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed “hotspots” of high erosion of up to 16 t ha−1 a−1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.  相似文献   

20.
秦岭地区植被覆盖动态变化对其生态环境有重要影响。本文利用Google Earth Engine云平台,选取1986—2019年Landsat TM/OLI地表反射率数据,结合像元二分模型估算秦岭地区植被覆盖度(FVC);通过年际变化斜率、变异系数、Hurst指数等评价指标,对FVC的时空变化、稳定性和持续性变化进行分析。此外,探究FVC与气温、降雨的耦合关系,并分析土地利用变化对FVC的影响。结果表明:34年间,秦岭地区FVC整体上呈现良好的状况,中高等及以上植被覆盖区达73.11%;FVC由1986年的62.86%增长到2019年的70.01%,植被活动在不断增强;FVC的变异系数均值为0.34,标准差为0.45,其稳定性与其空间分布呈高度自相关性;秦岭地区的植被覆盖变化受气候变化和人为因素的共同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号