首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马勇刚  李宏 《地理空间信息》2012,10(4):40-41,44
以2001年7月11日LandsatETM7影像和2009年7月16日TM影像为数据源,基于V-I-S理论模型,采用归一化光谱分解模型提取了乌鲁木齐市区范围内2个时段的植被、土壤、不透水层3个连续地表参数分量。通过对不透水层不同阈值的划分,提取了2时段的乌鲁木齐市城市发展的空间信息,结果较为满意;通过空间叠加计算方式获取了8年来乌鲁木齐市城市化发展的空间信息和主要拓展方向。结果表明,乌鲁木齐城市化发展速度较快,特别是北扩趋势显著。  相似文献   

2.
One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). By using the Landsat TM/ETM+ thermal infrared remote sensing data of 1993, 2001 and 2011 to retrieve the land surface temperature (LST) of Lanzhou City, and by adopting object-oriented fractal net evolution approach (FNEA) to make image segmentation of the LST, the UHI elements were extracted. The G* index spatial aggregation analysis was made to calculate the urban heat island ratio index (URI), and the landscape metrics were used to quantify the changes of the spatial pattern of the UHI from the aspects of quantity, shape and structure. The impervious surface distribution and vegetation coverage were extracted by a constrained linear spectral mixture model to explore the relationships of the impervious surface distribution and vegetation coverage with the UHI. The information of urban built-up area was extracted by using UBI (NDBI-NDVI) index, and the effects of urban expansion on city thermal environment were quantitatively analyzed, with the URI and the LST grade maps built. In recent 20 years, the UHI effect in Lanzhou City was strengthened, with the URI increased by 1.4 times. The urban expansion had a spatiotemporal consistency with the UHI expansion. The patch number and density of the UHI landscape were increased, the patch shape and the whole landscape tended to be complex, the landscape became more fragmented, and the landscape connectivity was decreased. The heat island strength had a negative linear correlation with the urban vegetation coverage, and a positive logarithmic correlation with the urban impervious surface coverage.  相似文献   

3.
This study developed an analytical procedure based upon a spectral unmixing model for characterizing and quantifying urban landscape changes in Indianapolis, Indiana, the United States, and for examining the environmental impact of such changes on land surface temperatures (LST). Three dates of Landsat TM/ETM+ images, acquired in 1991, 1995, and 2000, respectively, were utilized to document the historical morphological changes in impervious surface and vegetation coverage and to analyze the relationship between these changes and those occurred in LST. Three fraction endmembers, i.e., impervious surface, green vegetation, and shade, were derived with an unconstrained least-squares solution. A hybrid classification procedure, which combined maximum-likelihood and decision-tree algorithms, was developed to classify the fraction images into land use and land cover classes. Correlation analyses were conducted to investigate the changing relationships of LST with impervious surface and vegetation coverage. Results indicate that multi-temporal fraction images were effective for quantifying the dynamics of urban morphology and for deriving a reliable measurement of environmental variables such as vegetation abundance and impervious surface coverage. Urbanization created an evolved inverse relationship between impervious and vegetation coverage, and brought about new LST patterns because of LST's correlations with both impervious and vegetation coverage. Further researches should be directed to refine spectral mixture modeling by stratification, and by the use of multiple endmembers and hyperspectral imagery.  相似文献   

4.
Penman–Monteith (PM) theory has been successfully applied to calculate land surface evapotranspiration (ET) for regional and global scales. However, soil surface resistance, related to soil moisture, is always difficult to determine over a large region, especially in arid or semiarid areas. In this study, we developed an ET estimation algorithm by incorporating soil moisture control, a soil moisture index (SMI) derived from the surface temperature and vegetation index space. We denoted this ET algorithm as the PM-SMI. The PM-SMI algorithm was compared with several other algorithms that calculated soil evaporation using relative humidity, and validated with Bowen ratio measurements at seven sites in the Southern Great Plain (SGP) that were covered by grassland and cropland with low vegetation cover, as well as at three eddy covariance sites from AmeriFlux covered by forest with high vegetation cover. The results show that in comparison with the other methods examined, the PM-SMI algorithm significantly improved the daily ET estimates at SGP sites with a root mean square error (RMSE) of 0.91 mm/d, bias of 0.33 mm/d, and R2 of 0.77. For three forest sites, the PM-SMI ET estimates are closer to the ET measurements during the non-growing season when compared with the other three algorithms. At all the 10 validation sites, the PM-SMI algorithm performed the best. PM-SMI 8-day ET estimates were also compared with MODIS 8-day ET products (MOD16A2), and the latter showed negligible bias at SGP sites. In contrast, most of the PM-SMI 8-day ET estimates are around the 1:1 line.  相似文献   

5.
Douala, the most important metropolis of Cameroon, is a sub-Saharan wet coastal environment of which the anarchic urbanization is a socio-economic and environmental problem, significantly influencing the local climate. In this study, three Landsat images from 1986 (TM), 2007 (ETM+) and 2016 (LDCM), were utilized to investigate the effect of this urbanization on the increasing land surface temperature (LST) between these dates. Thus, the urban indices (UI), determined from the Landsat Visible and NIR channels were used to identify impervious areas (Urban Fabric and bare soil) of urban area. It has been shown from the UI images that, impervious areas have been increased from 1986 to 2016. The LST images derived have a continual expansion of zones and points of heat throughout these dates. The correlation analysis of LST and UI, at the pixel-scale, indicated the positive relationship between these parameters, which could show a real impact of urbanization on the increasing temperature in the area. These correlations are fairly low in 1986 (maximum R-square value is about 0.35) and in 2007 (maximum R-square value is about 0.44. In 2016, a high positive correlation (maximum R-square value is about 0.77) confirm that, the impervious areas strengthen the temperature and the Urban Heat Island effect in Douala urban zone. Overall, the earth observation images and the geographic information system techniques were effective approaches for aiming at environment monitoring and analyzing urban growth patterns and evaluating their impacts on urban climates.  相似文献   

6.
Studies of urbanization and urban thermal environment are now attracting wide interests among scientists all over the world. This study investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Guangzhou, China utilizing three dates of Landsat TM/ETM+ images acquired in 1990, 2000, and 2005, respectively. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban enlargement. As a key parameter for studying urban thermal characteristics, the land surface temperature (LST) was also retrieved from thermal infrared band of each TM/ETM+ dataset. Based on these parameters, the urban expansion, urban heat island effect and the relationships of LSTs to other biophysical parameters were then analyzed. Results indicated that the area ratio of impervious surface in Guangzhou increased significantly, which grew from 20.56% in 1990, to 34.72% in 2000, and further to 41.12% in 2005, however, the intensity of urban heat island was not always enlarged in observed years. In addition, Geostatistical analyses showed that the mean-centre of the impervious surface was moving towards the northwest during 1990–2005. And correlation analyses revealed that, at the pixel-scale, the association of LSTs to other two variables (vegetation abundance and percent impervious surface) was not straightforward, while LSTs possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional-scale, respectively. This study provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.  相似文献   

7.
王祎婷  谢东辉  李亚惠 《遥感学报》2014,18(6):1169-1181
针对城市及周边区域建造区和自然地表交织分布的特点,探讨了利用归一化植被指数(NDVI)和归一化建造指数(NDBI)构造趋势面的地表温度(LST)降尺度方法,以北京市市区及周边较平坦区域为例实现了LST自960 m向120 m的降尺度转换。分析了LST空间分布特征及NDVI、NDBI对地物的指示性特征;以北京市四至六环为界分析NDVI、NDBI趋势面对地表温度的拟合程度及各自的适用区域;在120 m、240 m、480 m和960 m 4个尺度上评价了NDVI、NDBI和NDVI+NDBI趋势面对LST的拟合程度和趋势面转换函数的尺度效应;对NDVI、NDBI和NDVI NDBI等3种方法的降尺度结果分覆盖类型、分区域对比评价。实验结果表明结合两种光谱指数的NDVI NDBI方法降尺度转换精度有所改善,改善程度取决于地表覆盖类型组合。  相似文献   

8.
As more than 50% of the human population are situated in cities of the world, urbanization has become an important contributor to global warming due to remarkable urban heat island (UHI) effect. UHI effect has been linked to the regional climate, environment, and socio-economic development. In this study, Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery, respectively acquired in 1989 and 2001, were utilized to assess urban area thermal characteristics in Fuzhou, the capital city of Fujian province in south-eastern China. As a key indicator for the assessment of urban environments, sub-pixel impervious surface area (ISA) was mapped to quantitatively determine urban land-use extents and urban surface thermal patterns. In order to accurately estimate urban surface types, high-resolution imagery was utilized to generate the proportion of impervious surface areas. Urban thermal characteristics was further analysed by investigating the relationships between the land surface temperature (LST), percent impervious surface area, and two indices, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI). The results show that correlations between NDVI and LST are rather weak, but there is a strong positive correlation between percent ISA, NDBI and LST. This suggests that percent ISA, combined with LST, and NDBI, can quantitatively describe the spatial distribution and temporal variation of urban thermal patterns and associated land-use/land-cover (LULC) conditions.  相似文献   

9.
In this study, we developed a prior-knowledge-based spectral mixture analysis (PKSMA) to map impervious surfaces by using endmembers derived separately for high- and low-density urban regions. First, an urban area was categorized into high- and low-density urban areas, using a multi-step classification method. Next, in high-density urban areas that were assumed to have only vegetation and impervious surfaces (ISs), the vegetation–impervious model (V–I) was used in a spectral mixture analysis (SMA) with three endmembers: vegetation, high albedo, and low albedo. In low-density urban areas, the vegetation–impervious–soil model (V–I–S) was used in an SMA analysis with four endmembers: high albedo, low albedo, soil, and vegetation. The fraction of IS with high and low albedo in each pixel was combined to produce the final IS map. The root mean-square error (RMSE) of the IS map produced using PKSMA was about 11.0%, compared to 14.52% only using four-endmember SMA. Particularly in high-density urban areas, PKSMA (RMSE = 6.47%) showed better performance than four-endmember (15.91%). The results indicate that PKSMA can improve IS mapping compared to traditional SMA by using appropriately selected endmembers and is particularly strong in high-density urban areas.  相似文献   

10.
蒸散发是水圈、大气圈和生物圈中水分循环和能量交换的纽带。在全球尺度上,蒸散发约占陆地降水总量的60%;作为其能量表达形式,潜热通量约占地表净辐射的80%。随着通量观测技术的发展,全球长期持续的观测数据得以获取和共享,近年来基于数据驱动的蒸散发遥感反演方法取得了较好的研究进展。本文针对数据驱动的蒸散发遥感反演方法和产品,从经验回归、机器学习和数据融合3个方面展开,对现有的研究进展进行了梳理、归纳和总结,并从驱动数据、反演方法、已有产品等方面指出目前仍存在的问题和不足。未来仍需开展数据驱动的高时空分辨率的蒸散发遥感反演方法的研究,有效考虑地表温度和土壤水分等可以指示地表蒸散发短期变化的重要信息,同时加强基于过程驱动的物理模型与数据驱动的模型的结合,使两类模型能互为补充、各自发挥所长,共同推动蒸散发遥感反演研究水平的进步。  相似文献   

11.
Land surface temperature (LST) is an important element of the climate system. Remote sensing methods for estimating LST have been developed in the past and several of them have been implemented at large-scales. Geostationary satellites are of particular interest because they depict the diurnal cycle. Soil moisture has a strong effect on the magnitude of surface temperature via its influence on emissivity; yet, information on soil moisture at large scales is meager. It is of interest to estimate what effect soil moisture has on the retrieval accuracy of surface temperature by methods of remote sensing. In this study, newly developed algorithms to estimate land surface temperature (LST) from geostationary satellites will be applied to GOES-8 observations during the Southern Great Plains 1997 Hydrology Experiment (SGP-97) when surface observations of both soil moisture and surface temperature were made. The ground observations were used to first demonstrate the influence of soil moisture on the diurnal cycle of the surface temperature, its amplitude and the lag in LST maxima. Subsequently, it was established that errors in LST as derived from GOES-8 measurements have a negative correlation with soil moisture, namely, increasing with the decrease of soil moisture.  相似文献   

12.
综合主动和被动微波数据监测土壤水分变化   总被引:12,自引:1,他引:12  
李震  郭东华  施建成 《遥感学报》2002,6(6):481-484
微波遥感测量土壤水分的方法主要分主动和被动两种,它们都是基于干燥土壤和水体之间介电常数的巨大差异。估算植被覆盖土壤表面土壤水分必须要考虑地表粗糙度和植被覆盖影响的问题。植被覆盖土壤表面的后向散射包括来自植被的体散射,来自地表的面散射和植被与地表间的交互作用散射项。本研究建立了一个半经验公式模型,用来计算体散射项,综合时间序列的主动和被动微波数据,消除植被覆盖的影响,估算地表土壤水分的变化状况。并应用1997年美国SGP‘97综合实验中的机载800m分辨辐射计ESTAR数据计算表面反射系数,综合Radarsat的SCAN-SAR数据得到体散射项,然后,由NOAA/AVHRR和TM计算得到的NDVI值加权分配50m分辨率的体散射项,最后计算50m分辨率的表面反射系数的变化值,从而得到土壤水分的变化情况,验证数据表明该计算结果与实测值一致。  相似文献   

13.
Evapotranspiration (ET) is continued process wherein moisture from soil and vegetated surface is transferred to the atmosphere. Changes in evapotranspiration are likely to have large impacts on terrestrial vegetation. Evapotranspiration is a seasonally varying property at a given place; changes in it reflect the status of soil moisture and terrestrial vegetation. Through water balance, ET can include major shifts in vegetative patterns and or its condition leading to climate change. Therefore, in this paper, it is attempted to estimate the evapotranspiration over various land cover using National Oceanic and Atmospheric Administration (NOAA)/ Advanced Very High Resolution Radiometer (AVHRR) data at coarse spatial resolution of 1.1 km. For this purpose, a semi-empirical model has been proposed to estimate the ET. Regression analysis has been carried out to develop an empirical relation between individual land cover surface temperature and ET, which will be helpful to know the effect of each land cover surface temperature on ET. In which, it is observed that surface temperature over grassland is more effective on ET in comparison to other land cover in March 1999 on the Mupfure, Zimbabwe catchment area. This type of estimation will be helpful for climate modeler, climatologists, ecosystem modeler and regional planner.  相似文献   

14.
Soil moisture (SM) content is one of the most important environmental variables in relation to land surface climatology, hydrology, and ecology. Long-term SM data-sets on a regional scale provide reasonable information about climate change and global warming specific regions. The aim of this research work is to develop an integrated methodology for SM of kastanozems soils using multispectral satellite data. The study area is Tuv (48°40′30″N and 106°15′55″E) province in the forest steppe zones in Mongolia. In addition to this, land surface temperature (LST) and normalized difference vegetation index (NDVI) from Landsat satellite images were integrated for the assessment. Furthermore, we used a digital elevation model (DEM) from ASTER satellite image with 30-m resolution. Aspect and slope maps were derived from this DEM. The soil moisture index (SMI) was obtained using spectral information from Landsat satellite data. We used regression analysis to develop the model. The model shows how SMI from satellite depends on LST, NDVI, DEM, Slope, and Aspect in the agricultural area. The results of the model were correlated with the ground SM data in Tuv province. The results indicate that there is a good agreement between output SM and SM of ground truth for agricultural area. Further research is focused on moisture mapping for different natural zones in Mongolia. The innovative part of this research is to estimate SM using drivers which are vegetation, land surface temperature, elevation, aspect, and slope in the forested steppe area. This integrative methodology can be applied for different regions with forest and desert steppe zones.  相似文献   

15.
基于混合光谱分解的城市不透水面分布估算   总被引:10,自引:0,他引:10  
岳文泽  吴次芳 《遥感学报》2007,11(6):914-922
城市化的一个重要表现就是不透水面分布比率的上升,城市内部不透水面分布是城市生态环境的一个重要指标。对于规模较大的大城市,采用高性价比的中等分辨率影像,获取不透水面的分布,是当前国际研究的一个热点。本研究利用Landsat 7的ETM 影像,在线性光谱分解的技术上,提取了上海市的不透水面分布并对其空间特征进行了分析。研究揭示,ETM 影像对于城市尺度的信息提取,其成本是较低的;对于城市地域来说,利用植被、高反照度、低反照度和裸露的土壤四种最终光谱端元的线性组合,可以较好地模拟ETM 波谱特征,而除了水面以外的高反照度、低反照度两种最终光谱端元,可以较好地表达城市不透水表面信息。结果显示,利用中等分辨率影像对上海中心城区不透水面分布提取的精度还是令人满意的,总体上,上海市不透水面分布比率较高,不透水面分布的空间差异进一步揭示了城市土地覆被空间结构以及城市空间扩展的差异性。  相似文献   

16.
Main objective of this study was to establish a relationship between land cover and land surface temperature (LST) in urban and rural areas. The research was conducted using Landsat, WorldView-2 (WV-2) and Digital Mapping Camera. Normalised difference vegetation index and normalised difference built-up index were used for establishing the relation between built-up area, vegetation cover and LST for spatial resolution of 30 m. Impervious surface and vegetation area generated from Digital Mapping Camera from Intergraph and WV-2 were used to establish the relation between built-up area, vegetation cover and LST for spatial resolutions of 0.1, 0.5 and 30 m. Linear regression models were used to determine the relationship between LST and indicators. Main contribution of this research is to establish the use of combining remote sensing sensors with different spectral and spatial resolution for two typical settlements in Vojvodina. Correlation coefficients between LST and LST indicators ranged from 0.602 to 0.768.  相似文献   

17.
城市不透水面覆盖度与地面温度遥感估算与分析   总被引:2,自引:0,他引:2  
全球气候变暖和城市化的快速发展,导致了城市不透水面急剧增加和热岛效应日趋严重.本文综合利用多源遥感数据进行城市不透水面覆盖度(ISP)和地面温度(LST)的估算,实验结果较好地反映了城市ISP和LST的空间分布和变化状况;同时对二者之间的相关关系进行了简要分析,发现ISP与地面温度之间具有正相关关系,为通过绿化建设改善...  相似文献   

18.
Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4. 5°C and 9°C higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.  相似文献   

19.
The 52 papers in this special issue make use of airborne and/or ground data to deal with questions such as: 1) the estimation of effective soil temperature and vegetation water content from remote sensing data; 2) the impact of physical parameters such as soil texture, topography, vegetation type. and surface roughness on surface soil moisture retrieval; 3) the transferability of current retrieval equations across scales ranging from tens of kilometers; and 4) issues related to downscaling of low-resolution passive-microwave observations of surface soil moisture.  相似文献   

20.
The knowledge of the surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change and human-environment interactions. The study analyses land surface temperature (LST) estimation using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) datasets (day time and night time) over National Capital Territory Delhi using the surface emissivity information at pixel level. The spatial variations of LST over different land use/land cover (LU/LC) at day time and night time were analysed and relationship between the spatial distribution of LU/LC and vegetation density with LST was developed. Minimum noise fraction (MNF) was used for LU/LC classification which gave better accuracy than classification with original bands. The satellite derived emissivity values were found to be in good agreement with literature and field measured values. It was observed that fallow land, waste land/bare soil, commercial/industrial and high dense built-up area have high surface temperature values during day time, compared to those over water bodies, agricultural cropland, and dense vegetation. During night time high surface temperature values are found over high dense built-up, water bodies, commercial/industrial and low dense built-up than over fallow land, dense vegetation and agricultural cropland. It was found that there is a strong negative correlation between surface temperature and NDVI over dense vegetation, sparse vegetation and low dense built-up area while with fraction vegetation cover, it indicates a moderate negative correlation. The results suggest that the methodology is feasible to estimate NDVI, surface emissivity and surface temperature with reasonable accuracy over heterogeneous urban area. The analysis also indicates that the relationship between the spatial distribution of LU/LC and vegetation density is closely related to the development of urban heat islands (UHI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号