首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of advancement and recession of the glaciers in the Himalayas is essential due to their contrasting response towards climatic change. In the present study, Survey of India (SOI) topographical maps of 1962, IRS: LISS-III image of 2001 and LANDSAT-5: TM (Thematic Mapper) image of 2009 were used to analyze the glacier fluctuations in a part of Zanskar valley. The analysis carried out on 212 glaciers indicated decrease of 57 km2 (8 %) of glacier area over many glacier which was partly compensated with area increase by 42 km2 (6 %) in other glaciers, resulting an overall glacier area decrease by only 15 km2 (2 %) from 1962–2001. Due to glacier fragmentation the number of glaciers increased from 212 in 1962 to 238 by 2001. Although majority of glaciers (88 %) exhibited retreat (up to 13 my?1), minor advancement (<15 my?1) also took place in few glaciers during this period. Advancement took place mainly in larger glaciers (2–5 km2 and >5 km2) located over wider altitudinal range (700 m–1,000 m) whereas smaller glaciers (<2 km2) with narrow altitudinal range (100 m–500 m) exhibited retreat. The supraglacial debris analysis indicated that percentage of debris cover over glaciers ranges from 1.43 % to 18.15 %. Smaller glaciers (<2 km2) were debris free in comparison to the larger glaciers (>5 km2). During 2001–2009 majority of the glaciers were apparently stable in terms of their area and snout position indicating less impact of climate forcing in parts of Zanskar valley as compared to other parts of the Himalaya.  相似文献   

2.
The Himalayas has one of the largest concentrations of glaciers outside the Polar Regions. Various reports suggest that significant number of mountain glaciers is shrinking due to climatic variations. Monitoring of these glaciers is important to assess future availability of water resources in the Himalayan region. However, Himalayan glaciers are normally difficult to monitor due to the rugged, mountainous terrain. Therefore, images of Indian Remote Sensing Satellite were used to monitor glaciers in the Baspa basin. Investigations have shown the presence of 30 glaciers in the basin, with areal extent of 167 km2. Out of these, 19 glaciers, with areal extent of 140 km2 were selected to estimate retreat. Investigation suggests that almost all glaciers are retreating in the study basin and overall 19% deglaciation has been observed from 1962 to 2001. In general, altitude distribution appears to have significant influence on glacial retreat. Glaciers located around 5000 m altitude range are showing 24% loss as compared to 14% by glaciers located in altitude range higher than 5400 m. In addition, mean altitude of glacier terminus is shifted upward by 88 m, i.e. from 4482 to 4570 m in last 39 years. The glacial volumes were estimated using regression relationship between area and depth. The investigations have suggested that 19.10 km3 of glacial water stored in the 19 glaciers in 1962, has been reduced to 14.71 km3 in 2001, respectively, an overall loss of 23 percent in a period between 1962 and 2001. These investigations suggest that all glaciers in the Baspa Basin are reducing and in long term, such reducing trend can create scarcity of water in the region.  相似文献   

3.
The importance of mass wasting in glacier environments and its impacts on glacier dynamics is not fully understood. This is the first occurrence of a debris avalanche event onto a Himalayan glacier through satellite data analysis. The analysis of various factors indicates the slide was a climate-driven hill-slope event activated in 2009 masking the Miyar glacier surface up to ~1.5% including its both lateral moraines and medial moraines. Due to this addition the glacier had neither advance nor retreat from 2009 to 2014. Eventually the debris will contribute to the supraglacial and englacial debris of the glacier. This showcases the way of mass wasting an important contribution to the debris budget of the Himalayan glaciers.  相似文献   

4.
An attempt has been made to study variations in the glacier extent over a period of time using digital elevation model (DEM) and orthoimages derived from IRS-1C PAN stereo pairs of 1997–98 and topographical map surveyed during 1962–63. DEM and orthoimages have been generated using integrated software developed for processing of IRSIC/ID panchromatic stereo data using the softcopy photogrammetric workstation. Case studies of two glaciers, i.e. the Janapa garang and Shaune garang glaciers of the Basapa basin, a sub-basin of Satluj River in India, have been presented here. Generation of DEM has been followed by the estimation of its accuracy. PAN images were interpreted for identification of the snout of the glaciers. The geographical locations of the snouts on the images were compared with the location as mapped on the topographical map of the study area. To verify satellite observations, field investigations were carried out at Shaune garang glacier area. The Janapa garang and the Shaune garang are observed to have retreat of 596m and 923 m respectively. Reduction in the thickness of ice in the deglaciated part of the Shaune garang glacier was estimated on the basis of change in the elevations of the glacial surface from 1963 to 1998.  相似文献   

5.
Using Landsat data at decadal interval (1980–2013), the glacier fluctuations (glacier area, equilibrium line altitude and specific mass balance) of nine benchmark glaciers in Kashmir Himalaya were estimated. The observed changes were related to topographic and climatic variables in order to understand their influence. From the data analysis, it was observed that the glaciers have shrunk by 17%, ELA has shifted upwards (80–300 m) and SMB shows variation in glacier mass loss from ?0.77 to ?0.16 m.w.e. Annual air temperature showed a significant increasing trend, and a slight but insignificant decrease in precipitation was observed during the period. It is evident that in the same climatic regime, varying topography plays a key role in determining the glacier changes. It is believed that the observed changes in the glacier geometry and dynamics, if continued, shall have adverse effect on the streamflows, water supplies and other dependent sectors in the region.  相似文献   

6.
Countries like Iran, which are geographically situated in a rather arid and warm regions, will suffer more from global warming than countries located in humid and semi-humid regions. In such environments, analyzing the variations of mountain glaciers can reveal several aspects of climate change patterns more efficiently in comparison to the other geo-indicators. The present study reports some evidence of changes for Alamkouh glacier between 1955 and 2010 based on several mediums to high-resolution satellite images. Considering that most part of the Alamkouh glacier is covered by debris and delineating its actual area is not possible, planimetric change analysis was restricted to the clean-ice regions. The object-oriented classification approach was used to estimate the clean ice areas. This technique takes into account the shapes of the features along with their spectral patterns. Results revealed that clean ice regions of Alamkouh glacier shrank since 1955 with an overall area reduction of about 59 %. Although the general observed trend is a clean ice area reduction, some advancement was detected over the period from 2000 to 2010. During 1992–2000, the maximum reduction in the clean ice area was observed (0.08 km2.a?1). However, clean ice area of the case study has partially increased about 0.028 km2.a?1 from 2000 to 2010. Supra-glacial lake change analysis illustrated that at the surface of the glacier, lakes have been enlarged remarkably in the past 55 years (about 4.75 times greater). In addition, clean ice area and the surface area of supra-glacial lakes oscillated in compliance with each other. The findings revealed that the maximum expansion of supra-glacial lake occurred during 1992–2000, which demonstrate the glacier maximum reduction during this period. This shrinkage in the Alamkouh glacier caused an extensive glacial lake outburst flood in Jun 2011. The results of this study agree with documented changes in other mountain glaciers located in arid and semi-arid environments and they also confirm the application of mountain glaciers in climate variations monitoring over such regions.  相似文献   

7.
Glaciers are widely recognized as key indicators of climate change, and melt water obtained from them is an important source of fresh water and for hydropower generation. Regular monitoring of a large number of Himalayan glaciers is important for improving our knowledge of glacier response to climate change. In the present study, Survey of India topographical maps (1966) and Landsat datasets as ETM+ (2000, 2006) and TM (2011) have been used to study glacier fluctuations in Tirungkhad basin. A deglaciation of 26.1% (29.1?km2) in terms of area from 1966 to 2011 was observed. Lower altitude small glaciers (area?<?1?km2) lost more ice (34%), while glaciers with an area <10?km2 lost less (20%). The percentage of change in glacier length was 26% (31.9?km) from 1966 to 2011. The south-facing glaciers showed high percentages of loss. From 2000 to 2011, debris cover has increased by 1.34%. The analysis of the trend in meteorological data collected from Kalpa and Purbani stations was carried out by Mann Kendall non-parametric method. During the last two decades, the mean annual temperature (Tmax and Tmin) has increased significantly, accompanied with a fall in snow water equivalent (SWE) and rainfall. The increasing trend in temperature and decreasing trend in SWE were significant at 95% confidence level. This observation shows that the warming of the climate is probably one of the major reasons for the glacier change in the basin.  相似文献   

8.
Dokriani Glacier is regarded as one of the important glaciers of Bhagirathi River basin, which fed river Ganges. The length of the glacier is about 4.6 km, and snout elevation is about 4028 m m.s.l. The mass balance of this glacier was calculated using field-based measurements for few years during 1994 to 2000. However, due to remote and poor accessibility, the field-based measurements could not continue; thus, remote sensing-based methods become useful tool to estimate the long-term mass balance of the glacier. In this study, glacier mass balance has been determined using accumulation area ratio (AAR) method. Remote sensing data sets, e.g. Landsat TM, ETM?+?and OLI, have been used to estimate AAR for different years from 1994 to 2014. An attempt has also been made to develop a mathematical relationship between remote sensing-derived AAR and field-observed mass balance data of the glacier. Further, this relationship has been used to estimate mass balance of the glacier for different years using remote sensing-derived AAR. Estimated mass balance was validated from ground-observed mass balance for few years. The field-observed and remote sensing-derived mass balance data are compared and showed high correlation. It has been observed that AAR for the Dokriani Glacier varies from 0.64 to 0.71. Mass balance of the glacier was observed between ??15.54 cm and ??50.95 cm during the study period. The study highlights the application of remote sensing in mass balance study of the glaciers and impact of climate change in glaciers of Central Indian Himalaya.  相似文献   

9.
Abstract

This paper documents ongoing glacier retreat in the eastern part of the Granatspitz Mountains (Hohe Tauern Range, Austrian Alps) for the time period 2003–2009 using aerial photogrammetry. Aerial photographs of 2003, 2006, and 2009 were made available by the Hydrological Service of the Regional Government of Salzburg, the Federal Office of Metrology, Surveying and Mapping, Vienna, and the Regional Government of the Tyrol, respectively. High resolution multi-temporal digital elevation models and digital orthophotos of the area of interest were derived using digital photogrammetric methods to provide a sound basis for glaciological research. Glacier outlines of the three glacial stages were mapped interactively. Temporal change in area and surface height of the glaciers mapped clearly document glacier retreat. Glacier mass balance based on the geodetic method was calculated for Stubacher Sonnblickkees (Glacier). Mean annual specific net balance amounts to ?656 mm w.e. for the time period 2003–2009, with a mass balance gradient of 324 mm w.e. (100 m)?1 and an equilibrium-line altitude of 2995 m a.s.l. Digital orthophoto maps and other thematic maps, e.g. showing surface height change, were prepared to support further data interpretation. Both the study area and its spatio-temporal change were visualized with special emphasis on the glaciers in a computer generated video film. Another film (exposure 29 August 2011) shows the lower part of Stubacher Sonnblickkees and its surroundings for reasons of comparison.  相似文献   

10.
Snow physical properties, snow cover and glacier facies are important parameters which are used to quantify snowpack characteristics, glacier mass balance and seasonal snow and glacier melt. This study has been done using C-band synthetic aperture radar (SAR) data of Indian radar imaging satellite, radar imaging satellite-1 (RISAT)-1, to estimate the seasonal snow cover and retrieve snow physical properties (snow wetness and snow density), and glacier radar zones or facies classification in parts of North West Himalaya (NWH), India. Additional SAR data used are of Radarsat-2 (RS-2) satellite, which was used for glacier facies classification of Smudra Tapu glacier in Himachal Pradesh. RISAT-1 based snow cover area (SCA) mapping, snow wetness and snow density retrieval and glacier facies classification have been done for the first time in NWH region. SAR-based inversion models were used for finding out wet and dry snow dielectric constant, dry and wet SCA, snow wetness and snow density. RISAT-1 medium resolution scan-SAR mode (MRS) in HV polarization was used for first time in NWH for deriving time series of SCA maps in Beas and Bhagirathi river basins for years 2013–2014. The SAR-based inversion models were implemented separately for RISAT-1 quad pol. FRS2, for wet snow and dry snow permittivity retrieval. Masks for layover and shadow were considered in estimating final snow parameters. The overall accuracy in terms of R2 value comes out to be 0.74 for snow wetness and 0.72 for snow density based on the limited ground truth data for subset area of Manali sub-basin of Beas River up to Manali for winter of 2014. Accuracy for SCA was estimated to be 95 % when compared with optical remote sensing based SCA maps with error of ±10 %. The time series data of RISAT-1 MRS and hybrid data in RH/RV mode based decompositions were also used for glacier radar zones classification for Gangotri and Samudra Tapu glaciers. The various glaciers radar zones or facies such as debris covered glacier ice, clean or bare glacier ice radar zone, percolation/refreeze radar zone and wet snow, ice wall etc., were identified. The accuracy of classified maps was estimated using ground truth data collected during 2013 and 2014 glacier field work to Samudra Tapu and Gangotri glaciers and overall accuracy was found to be in range of 82–90 %. This information of various glacier radar zones can be utilized in marking firn line of glaciers, which can be helpful for glacier mass balance studies.  相似文献   

11.
本文以L波段的ALOS PALSAR-2数据为基础,采用长时间序列InSAR技术对2014年9月至2019年8月的青藏高原区域进行动态监测,结合偏移量追踪法获取部分冰川在尼泊尔地震前后分别在距离向、方位向和水平方向的冰川流速分布结果。结果表明:在监测时段内,研究区普遍存在沉降现象,仅在个别年份出现小幅度的抬升,研究区最大年平均形变速率可达-203.1 mm/a,认为此次地震对研究区的时序观测结果的波动有特殊影响;在研究时期内部分冰川流速在地震后的相当长的一段时间内大幅度增加,最大速度可达2.645 m/d,认为地震是导致冰川流速急剧增加的原因之一。  相似文献   

12.
Himalayan region has one of the largest concentrations of mountain glaciers whose areal extent is changing due to global warming. In order to assess future changes in glacier extent due to global warming, information about glacier depth and debris cover is important. In this paper, application of ground penetrating radar (GPR) is discussed to assess glacier depth and debris cover. This investigation was carried out at Patseo and Samudratapu glaciers in Himachal Pradesh (West Himalaya). Antennas of frequency 50 and 100 MHz have been used for glacier depth and 500 MHz for moraine depth estimation. GPR signatures of glaciers were collected and further analyzed using velocities of electromagnetic waves in different media. The depth of Patseo glacier was estimated as 40 m. However, depth of the larger Samudra Tapu glacier could not be estimated using 50 and 100 MHz antennas. The depth of moraines was estimated using 500 MHz antenna and it varies from 0.35 cm to 0.85 cm for medial and around 1–2 m for lateral moraine at the experimental site.  相似文献   

13.
Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier??s health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be ?ve 0.19?m, ?ve 0.27?m and ?ve 0.2?m respectively. It is 0.05?m, ?ve 0.11?m and ?ve 0.19?m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83?km3 of glacier in the monitoring period of 3?years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3?years.  相似文献   

14.
Himalayas possess one of the largest resources of snow, ice and glaciers that act as a huge freshwater reservoir. Monitoring the glaciers is important to assess the overall reservoir health of the Himalayas. Samudra Tapu is one of the largest glaciers in Chandra basin of district Lahaul and Spiti, Himachal Pradesh. Based on the field investigations and the remote sensing techniques. features such as accumulation area, ablation area snowline/equilibrium line, moraine-dammed lakes and permanent snowfields were mapped. The glacial terminus was identified using moraine-dammed lake, as lake is located at down streamside of the terminus. The total recession of glacier during the period of 38 years (1962–2000) is about 742 m with an average rate of 19.5 m/yr. In addition, glacial extent is reduced from 73 to 65 km2 between 1962 and 2000. suggesting overall deglaciation of 11%. During field investigation. three stages of glaciation using terminal moraine were identified. These moraines were mapped by merging LISS-II1 and PAN data. At the peak of glaciation. the glacial terminus was extended 3.18 km downstream of terminus position in year 2000. Total area during peak of glaciation period has been observed to be 77.67 km2, which is 12.67 km2 higher than the present glacier extent.  相似文献   

15.
ABSTRACT

The climate in southern Iceland has warmed over the last 70 years, resulting in accelerated glacier dynamics at the Solheimajoküll glacier. In this study, we compare glacier terminus locations from 1973 to 2018, to changes in climate across the study area, and we derive ice-surface velocities (2015–2018) from satellite remote-sensing imagery (Sentinel-1) using the offset-tracking method. There have been two regional temperature trends in the study period: cooling (1973–1979) and warming (1980–2018). Our results indicate a time lag of about 20 years between the onset of glacier retreat (?53 m/year since 2000) and the inception of the warming period. Seasonally, the velocity time series suggest acceleration during the summer melt season since 2016, whereas glacier velocities during accumulation months were constant. The highest velocities were observed at high elevations where the ice-surface slope is the steepest. We tested several scenarios to assess the hydrological time response to glacier accelerations, with the highest correlations being found between one and 30 days after the velocity estimates. Monthly correlation analyses indicated inter-annual and intra-annual variability in the glacier dynamics. Additionally, we investigate the linkage between glacier velocities and meltwater outflow parameters as they provide useful information about internal processes in the glacier. Velocity estimates positively correlate with water level and negatively correlate with water conductivity between April and August. There is also a disruption in the correlation trend between water conductivity and ice velocity in June, potentially due to a seasonal release of geothermal water.  相似文献   

16.
In this study ascending and descending passes interferometric synthetic aperture radar (InSAR) techniques are used for glacier surface velocity estimation in the Himalaya. Single-track interferometric measurements are sensitive to only a single component of the three dimensional (3-D) velocity vectors. European Remote Sensing satellites (ERS-1/2) tandem mission data in ascending and descending tracks provide an opportunity to resolve the three velocity components under the assumption that glacier flow is parallel to its surface. Using the surface slope as an essential input in this technique the velocity pattern of Siachen glacier in Himalaya has been modelled. Glaciers in the Himalayan region maintain excellent coherence of SAR return signals in one-day temporal difference. As a result we could obtain spatially continuous surface velocity field with a precision of fraction of radar wavelength. The results covering the main course of glacier are analysed in terms of spatial and temporal variations. A maximum velocity of 43 cm/day has been observed in the upper middle portion of the glacier. This technique has been found accurate for monitoring the flow rates in this region, suggesting that routine monitoring of diurnal movement Himalayan glaciers would be immensely useful in the present day context of climate change.  相似文献   

17.
Monitoring the evolution of polar glaciers, ice caps and ice streams is of utmost importance because they constitute a good indicator of global climate change and contribute significantly to ongoing sea level rise. Accurate topographic surveys are particularly relevant as they reflect the geometric evolution of ice masses. Unfortunately, the precision and/or spatial coverage of current satellite missions (radar altimetry, ICESat) or field surveys are generally insufficient. Improving our knowledge of the topography of Polar Regions is the goal of the SPIRIT (SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies) international polar year (IPY) project. SPIRIT will allow (1) the acquisition of a large archive of SPOT 5 stereoscopic images covering most polar ice masses and, (2) the delivery of digital terrain models (DTM) to the scientific community.Here, we present the architecture of this project and the coverage achieved over northern and southern polar areas during the first year of IPY (July 2007 to April 2008). We also provide the first accuracy assessments of the SPIRIT DTMs. Over Jakobshavn Isbrae (West Greenland), SPIRIT elevations are within ±6 m of ICESat elevations for 90% of the data. Some comparisons with ICESat profiles over Devon ice cap (Canada), St Elias Mountains (Alaska) and west Svalbard confirm the good overall quality of the SPIRIT DTMs although large errors are observed in the flat accumulation area of Devon ice cap. We then demonstrate the potential of SPIRIT DTMs for mapping glacier elevation changes. The comparison of summer-2007 SPIRIT DTMs with October-2003 ICESat profiles shows that the thinning of Jakobshavn Isbrae (by 30–40 m in 4 years) is restricted to the fast glacier trunk. The thinning of the coastal part of the ice stream (by over 100 m) and the retreat of its calving front (by up to 10 km) are clearly depicted by comparing the SPIRIT DTM to an ASTER April-2003 DTM.  相似文献   

18.
Peri-glacial studies of the Samudra Tapu glacier reveal three stages of well preserved moraines which are also marked by fluvial overprinting. The signatures of fluvial outwashes over the otherwise morainal deposits have been utilized in estimating the extent of palaeo-lake in the valley of Samudra Tapu glacier of the Chandra basin. Distance and thickness of snout of the glacier and its morainal deposits is estimated by the Laser Range Finder. With the change in the position of the snout there is a change in the extent and orientation of the lake. Recent expedition to the glacier confirms this process to be continuing. The study is important in reconstructing formation of the lake with respect to snout position of the glacier. Based on ground truth, fast melting of the snout is confirmed from year 2004 onwards, with the development of fresh end/terminal moraine. The study reveals that the snout region of the Samudra Tapu glacier is thinning and retreating at an alarming rate and is enlarging the lake extent. The development of fresh terminal moraine has the potential to impound the fast melting glacial waters which in turn can pose serious threat to the downstream regions of the Chandra valley.  相似文献   

19.
Tons basin has the maximum share of glaciers, more than 50 glaciers, as well as glacierised area in Uttarakhand and Himachal Pradesh and the majority of the glaciers are of valley type. One of the important features of the glaciers of Tons valley is the presence of a thick mantle of supraglaciers moraine cover which can be attributed to the terrain characteristics, besides, the avalanche fed nature of the glaciers. The present study is the extraction of Glacio-geomorphological unit of Tons River basin based on the visual interpretation of remote sensing data. It was very much difficult in field, to extract all glacio-geomorphological units in glaciated area, but based on the remote sensing data, it becomes easy to identify. With the help of glacio-geomorphological map it has been found that four most important glaciers which fed the Tons River are Bandarpunch Glacier, Jaundar Bamak glacier, Jhajju Bamak and Tilku glacier. The tributaries of Tons River i.e. Harkidun Gad, Rupin Nadi and Supin Nadi are mainly fed by the mountain glaciers, valley glaciers and glacier lakes. The erosional terraces, glacio-fluvial terraces, open ??U?? shaped valleys, proglacial lake, lateral moraines, terminal moraines, palaeo-cirque and debris/talus cones are well developed in this glaciated regions. Glacio-geomorphic features are very much significant for palaeo-climatic reconstruction, showing variations, temporally and spatially. At the same time, these landforms, which are also altered by processes prevailing during interglacial period, helps in the geo-environment studies and glacier related problems like avalanches, global warming and cloudburst etc.  相似文献   

20.
Parkachik Glacier is located in the Suru sub-basin of the Upper Indus River, Zanskar Himalaya. The Glacier has been analysed using Corona KH-4B (1971), Landsat-TM (1999), field survey (2015), Google EarthTM (2015) and ASTER GDEM (2015) for frontal recession and area changes. Overall, from 1971 to 2015, the Glacier has retreated by 127 ± 0.09 m i.e. (0.75 ± 0.07%) at a rate of 2.9 ± 0.004 ma?1 with a simultaneous decrease in area from 49.5 to 48.8 km2 i.e. 740 ± 0.7 m2 (1.5 ± 0.09%) at a rate of 74 ± 0.7 m2a?1. However, during recent decade (1999–2015), the rate of glacier recession of 3.9 ± 0.004 ma?1 with a corresponding area loss of 500 ± 0.74m2 (1 ± 0.1%) was higher than the retreat rate of 2.3 ± 0.001 ma?1 and an area loss of 240 ± 0.02m2 (0.48 ± 0.08%) during 1971–1999. In the field, the evidences of glacier recession are present in the form of separated dead ice blocks from the main Glacier, recessional dumps/moraines, active ice calving activity and a small proglacial pond/lake at the terminus/snout of the Glacier. However, the recession over the studied period has been very slow and is controlled by its topographic configuration, particularly the large altitudinal range (6030–3620 m), almost northerly aspect and steep slope (average ~ 30°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号