首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An empirical study was performed assessing the accuracy of land use change detection when using satellite image data acquired ten years apart by sensors with differing spatial resolutions. Landsat/Multi‐spectral Scanner (MSS) with Landsat/Thematic Mapper (TM) or SPOT/High Resolution Visible (HRV) multi‐spectral (XS) data were used as a multi‐data pair for detecting land use change. The primary objectives of the study were to: (1) compare standard change detection methods (e.g. multi‐date ratioing and principal components analysis) applied to image data of varying spatial resolution; (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice‐versa in the registration process: and (3) determine if Landsat/TM or SPOT/ HRV(XS) data provides more accurate detection of land use changes when registered to historical Landsat/MSS data.

Ratioing multi‐sensor, multi‐date satellite image data produced higher change detection accuracies than did principal components analysis and is useful as a land use change enhancement technique. Ratioing red and near infrared bands of a Landsat/MSS‐SPOT/HRV(XS) multi‐date pair produced substantially higher change detection accuracies (~10%) than ratioing similar bands of a Landsat/MSS ‐ Landsat/TM multi‐data pair. Using a higher‐resolution raster grid of 20 meters when registering Landsat/MSS and SPOTZHRV(XS) images produced a slightly higher change detection accuracy than when both images were registered to an 80 meter raster grid. Applying a “majority”; moving window filter whose size approximated a minimum mapping unit of 1 hectare increased change detection accuracies by 1–3% and reduced commission errors by 10–25%.  相似文献   

2.
Land use/cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land use/cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims at establishing an efficient classification approach to accurately map all broad land use/cover classes in a large, heterogeneous tropical area, as a basis for further studies (e.g., land use/cover change, deforestation and forest degradation). Specifically, we first compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbor and four different support vector machines – SVM), and hybrid (unsupervised–supervised) classifiers, using hard and soft (fuzzy) accuracy assessments. We then assess, using the maximum likelihood algorithm, what textural indices from the gray-level co-occurrence matrix lead to greater classification improvements at the spatial resolution of Landsat imagery (30 m), and rank them accordingly. Finally, we use the textural index that provides the most accurate classification results to evaluate whether its usefulness varies significantly with the classifier used. We classified imagery corresponding to dry and wet seasons and found that SVM classifiers outperformed all the rest. We also found that the use of some textural indices, but particularly homogeneity and entropy, can significantly improve classifications. We focused on the use of the homogeneity index, which has so far been neglected in land use/cover classification efforts, and found that this index along with reflectance bands significantly increased the overall accuracy of all the classifiers, but particularly of SVM. We observed that improvements in producer's and user's accuracies through the inclusion of homogeneity were different depending on land use/cover classes. Early-growth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land use/cover classes were mapped with producer's and user's accuracies of ∼90%. Our classification approach seems very well suited to accurately map land use/cover of heterogeneous landscapes, thus having great potential to contribute to climate change mitigation schemes, conservation initiatives, and the design of management plans and rural development policies.  相似文献   

3.
为验证基于TM影像的面向对象分类方法对复杂地区地表覆被信息提取的可行性,以地处西南地区的渝北为例进行实验。利用样本数据对各个波段的光谱特征进行分析,取得对各波段覆被探测能力的初步认识;基于光谱特征的多尺度分割,运用面向对象分类方法对其分类。面向对象的分类方法总精度和Kappa系数分别为88.42%和0.854 7,将其与监督、非监督分类结果对比分析。结果表明,该方法有效抑制了"椒盐"现象,取得较好的分类结果。  相似文献   

4.
在土地利用/覆盖研究中,对于范围广、地域差别大的地区,仅用同一标准对遥感图像进行分类往往难以得到理想的效果。 本文以浙江省钱塘江流域为例,通过对Landsat TM数据各波段组合,首先提取水层和山层信息,然后采用掩模法提取平原丘陵层信 息,并根据地形地貌和土地利用现状的差异,将平原丘陵层划分为6个区,当所划分区域内各景的影像时相不一致时,再对该区进 行分景处理。最后,分别对每层、每区和每景图像进行训练样本的选择和监督分类。试验结果表明,结合分层、分区和分景的监督 分类方法是一种适合于较大区域土地利用/土地覆盖分类的有效方法。  相似文献   

5.
针对传统遥感影像解译效率较低、人力物力需求量大等问题,该文以谷歌地球引擎为依托平台,利用Landsat5TM影像,采用分类回归树算法对2010年北京市土地覆被/土地利用类型开展了解译研究,并从类型构成、类型混淆和空间一致性3个方面将解译所得LUC-2010产品与Globeland30-2010产品进行空间一致性分析。研究表明,谷歌地球引擎(GEE)平台通过编程运算,数据处理速度极快,大幅提高工作效率。解译产品与训练样本交叉验证的学习精度为94.2%。两套产品总体对比发现,林地、水体和耕地的空间一致性比率分别为84.28%、74.75%和73.56%;林地、水体和人工地表的地类纯净度分别为87.23%、77.04%和72.97%;总体分布空间一致性为74.0%。两套产品局部对比发现,LUC-2010产品分类结果更准确和精细,精度更高。  相似文献   

6.
Abstract

A classification method was developed for mapping land cover in NE Costa Rica at a regional scale for spatial input to a biogeochemical model (CENTURY). To distinguish heterogeneous cover types, unsupervised classifications of Landsat Thematic Mapper data were combined with ancillary and derived data in an iterative process. Spectral classes corresponding to ground control types were segregated into a storage raster while ambiguous pixels were passed through a set of rules to the next stage of processing. Feature sets were used at each step to help sort spectral classes into land cover classes. The process enabled different feature sets to be used for different types while recognizing that spectral classification alone was not sufficient for separating cover types that were defined by heterogeneity. Spectral data included the TM reflective bands, principal components and the NDVI. Ancillary data included GIS coverages of swamp extents, banana plantation boundaries and river courses. Derived data included neighborhood variety and majority measures that captured texture. The final map depicts 18 land cover types and captures the general patterns found in the region. Some confusion still exists between closely related types such as pasture with different amounts of tree cover.  相似文献   

7.
Plague is a zoonotic infectious disease present in great gerbil populations in Kazakhstan. Infectious disease dynamics are influenced by the spatial distribution of the carriers (hosts) of the disease. The great gerbil, the main host in our study area, lives in burrows, which can be recognized on high resolution satellite imagery. In this study, using earth observation data at various spatial scales, we map the spatial distribution of burrows in a semi-desert landscape.The study area consists of various landscape types. To evaluate whether identification of burrows by classification is possible in these landscape types, the study area was subdivided into eight landscape units, on the basis of Landsat 7 ETM+ derived Tasselled Cap Greenness and Brightness, and SRTM derived standard deviation in elevation.In the field, 904 burrows were mapped. Using two segmented 2.5 m resolution SPOT-5 XS satellite scenes, reference object sets were created. Random Forests were built for both SPOT scenes and used to classify the images. Additionally, a stratified classification was carried out, by building separate Random Forests per landscape unit.Burrows were successfully classified in all landscape units. In the ‘steppe on floodplain’ areas, classification worked best: producer's and user's accuracy in those areas reached 88% and 100%, respectively. In the ‘floodplain’ areas with a more heterogeneous vegetation cover, classification worked least well; there, accuracies were 86 and 58% respectively. Stratified classification improved the results in all landscape units where comparison was possible (four), increasing kappa coefficients by 13, 10, 9 and 1%, respectively.In this study, an innovative stratification method using high- and medium resolution imagery was applied in order to map host distribution on a large spatial scale. The burrow maps we developed will help to detect changes in the distribution of great gerbil populations and, moreover, serve as a unique empirical data set which can be used as input for epidemiological plague models. This is an important step in understanding the dynamics of plague.  相似文献   

8.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

9.
Large and growing archives of orbital imagery of the earth’s surface collected over the past 40 years provide an important resource for documenting past and current land cover and environmental changes. However uses of these data are limited by the lack of coincident ground information with which either to establish discrete land cover classes or to assess the accuracy of their identification. Herein is proposed an easy-to-use model, the Tempo-Spatial Feature Evolution (T-SFE) model, designed to improve land cover classification using historical remotely sensed data and ground cover maps obtained at later times. This model intersects (1) a map of spectral classes (S-classes) of an initial time derived from the standard unsupervised ISODATA classifier with (2) a reference map of ground cover types (G-types) of a subsequent time to generate (3) a target map of overlaid patches of S-classes and G-types. This model employs the rules of Count Majority Evaluation, and Subtotal Area Evaluation that are formulated on the basis of spatial feature evolution over time to quantify spatial evolutions between the S-classes and G-types on the target map. This model then applies these quantities to assign G-types to S-classes to classify the historical images. The model is illustrated with the classification of grassland vegetation types for a basin in Inner Mongolia using 1985 Landsat TM data and 2004 vegetation map. The classification accuracy was assessed through two tests: a small set of ground sampling data in 1985, and an extracted vegetation map from the national vegetation cover data (NVCD) over the study area in 1988. Our results show that a 1985 image classification was achieved using this method with an overall accuracy of 80.6%. However, the classification accuracy depends on a proper calibration of several parameters used in the model.  相似文献   

10.
利用卫星遥感数据制作复杂地形环境的植被图面临的最主要问题是精度,单纯对遥感数据(TM或SPOI)进行监督或非监督分类的精度低于50%。本文选择美国亚利桑那州SantaCatalina山脉的PuschRidge作为研究区,分析地理信息系统模型在改善植被分类精度中的作用。结果表明,通过结合辅助数据和应用地理信息系统模型,其精度可以从37.41%提高到71.67%(SPOT数据,非监督分类),或从50.07%提高到61.50%(TM数据,监督分类)。同时表明用SPOT数据进行山区植被制图的效果好于TM数据。  相似文献   

11.
QuickBird satellite imagery acquired in June 2003 and September 2004 was evaluated for detecting the noxious weed spiny aster [Leucosyris spinosa (Benth.) Greene] on a south Texas, USA rangeland area. A subset of each of the satellite images representing a diversity of cover types was extracted and used as a study site. The satellite imagery had a spatial resolution of 2.8 m and contained 11-bit data. Unsupervised and supervised classification techniques were used to classify false colour composite (green, red, and near-infrared bands) images of the study site. Imagery acquired in June was superior to that obtained in September for distinguishing spiny aster infestations. This was attributed to differences in spiny aster phenology between the two dates. An unsupervised classification of the June image showed that spiny aster had producer's and user's accuracies of 90% and 93.1%, respectively, whereas a supervised classification of the June image had producer's and user's accuracies of 90% and 81.8%, respectively. These results indicate that high resolution satellite imagery coupled with image analysis techniques can be used successfully for detecting spiny aster infestations on rangelands.  相似文献   

12.
Landsat Thematic Mapper (TM) and Multispectral Scanner (MSS) data were digitally analyzed for forest type identification in the Kisatchie Ranger District, Kisatchie National Forest, Louisiana. Ground‐verification maps were produced from field surveys and interpretation of 1.12,000 and 1: 58,000 color‐infrared (CIR) aerial photography of nine compartments. Stand boundary and soils maps were input to a digital Geographic Information System (GIS) with the Landsat and ground‐verification data.

‐ Unsupervised classifications of the Landsat data did not identify the above cover types well. Supervised classifications were tested by stand agreement to the ground verification. The highest four‐class agreement was obtained for the TM classification (76 percent). Three‐class (open, pine, and hardwoods) stand agreements (81 (MSS) and 85 (TM) percent) were not significantly different as tested by analysis of variance (alpha level 0.1).  相似文献   

13.
Topographic information from maps and geographical information systems (GIS) has been combined with satellite data (SPOT Panchromatic, SPOT Multispectral and Landsat Thematic Mapper) to derive a product that may be valuable in preliminary route location studies. The objectives of this study were to evaluate the classification accuracy of this combined product, to compare levels of ground detail obtainable from different types of satellite imagery against aerial photography, and to present an example application on the use of the combined product.
The classification accuracy of the combined product was dependent on the type of land cover and was 83 to 100 per cent successful, with accuracy exceeding 95 per cent for most land cover types. The overall accuracy of the product was almost 95 per cent, with accuracy based on KHAT statistics of 92 per cent. Varying levels of ground detail were attainable from different types of satellite imagery. This detail may be adequate for preliminary route selection, especially in the absence of aerial photographs and GIS. The combined product presented in this study was applied successfully in selecting the optimal route for the Greater Amman ring road.  相似文献   

14.
Abstract

The output from any spatial data processing method may contain some uncertainty. With the increasing use of satellite data products as a source of data for Geographical Information Systems (GIS), there have been some major concerns about the accuracy of the satellite‐based information. Due to the nature of spatial data and remotely sensed data acquisition technology, and conventional classification, any single classified image can contain a number of mis‐classified pixels. Conventional accuracy evaluation procedures can report only the number of pixels that are mis‐classified based on some sampling observation. This study investigates the spatial distribution and the amount of these pixels associated with each cover type in a product of satellite data. The study uses Thematic Mapper (TM) and SPOT multispectral data sets obtained for a study area selected in North East New South Wales, Australia. The Fuzzy c‐Means algorithm is used to identify the classified pixels that contained some uncertainty. The approach is based on evaluating the strength of class membership of pixels. This study is important as it can give an indication of the amount of error resulting from the mis‐classification of pixels of specific cover types as well as the spatial distribution of such pixels. The results show that the spatial distribution of erroneously classified pixels are not random and varies depending on the nature of cover types. The proportions of such pixels are higher in spectrally less clearly defined cover types such as grasslands.  相似文献   

15.
Abstract

Forest cover monitoring plays an important role in the implementation of climate change mitigation policies such as Kyoto protocol and Reducing Emissions from Deforestation and Forest Degradation (REDD). In this study, we have monitored land cover using the PALSAR (Phased Array type L-band Synthetic Aperture Radar) full polarimetric data based on incoherent target decomposition. Supervised classification technique has been applied on Cloude–Pottier decomposition, Freeman–Durden three component, and Yamaguchi four component decomposition for accurate mapping of different types of land cover classes. Based on confusion matrix derived from the predicted and defined pixels, the evergreen and sparsely deciduous forests have shown high producer's accuracy by Freeman–Durden three component and Yamaguchi four component classifications. The overall accuracy of Maximum Likelihood Classification by Yamaguchi four component is 94.1% with 0.93 kappa coefficient as compared to the 90.3% with 0.88 kappa coefficient by Freeman–Durden three component and 89.7% with 0.88 kappa coefficient by Cloude–Pottier decomposition. High accuracy of classification in a forested area using full polarimetric PALSAR data may have been because of high penetration of L-band SAR. The content of this study could be useful for the forest cover mapping during cloudy days needed for proper implementation of REDD policies in Cambodia.  相似文献   

16.
土地利用/覆盖分类通常是利用地物的波谱反射特征进行监督或非监督分类,分类结果由于"同物异谱、异物同谱"现象的存在,往往分类精度不高。而植被指数和地表温度作为表征地表覆盖状况的生物物理参数,已成功用于宏观尺度的土地利用/覆盖分类,使得分类结果有所提高,而对于区域尺度的土地利用/覆盖分类却少见报道。本文充分利用TM数据的多光谱特征,从中提取了植被指数NDVI、地表温度Ts、温度植被角度TVA和温度植被距离TVD这四种分类特征进行监督分类,通过对7种组合方案(反射率波段组合、NDVI与反射率波段组合、Ts与反射率波段组合、NDVI与Ts和反射率波段组合、TVA与反射率波段组合、TVD与反射率波段组合、TVA与TVD和反射率波段组合)的分类结果进行比较,得出以下结论:①NDVI、Ts、NDVI和Ts、TVD作为分类特征参与到多波段地表反射率影像分类中,能够提高分类精度,而TVA、TVA和TVD的加入却没有改善分类结果;②总体分类精度受到训练样本与检验样本比例的影响。  相似文献   

17.
A basic methodology for land cover classification using airborne multispectral scanner (MSS) imagery is outlined. This includes waveband selection and radiometric calibration; correction for scan angle and atmosphere; training and classification and accuracy assessment. Refinements to this basic methodology include per‐field sampling and the addition of low‐pass filtering, image texture, prior probabilities and two dates of imagery.

For a study area in upland England, eight land covers were classified with a mean accuracy of 52.6 percent using the basic methodology. This was increased to 79.0 percent by using a suitability refined methodology. Per‐field sampling accounted for the largest proportion of this increase.  相似文献   

18.
泥炭沼泽是重要的湿地类型之一,对全球变化和生态平衡具有重要意义。本研究在野外实地调查和对比不同地物类型在不同极化方式下雷达影像后向散射系数差异的基础上,以ENVISAT ASAR、Landsat TM与数字高程模型(digital elevation model,DEM)数据为基本信息源,利用面向对象与决策树分类相结合的遥感影像分类方法,实现对小兴安岭西部泥炭沼泽典型分布区不同泥炭沼泽类型的空间分布信息提取,总体分类精度93.54%,Kappa系数0.92。结果表明,该方法在泥炭沼泽信息提取方面具有较大的应用潜力,相对于先前的研究,在分类精度上有一定的提高。  相似文献   

19.
1975年—2018年白洋淀湿地变化分析   总被引:2,自引:0,他引:2  
白洋淀湿地生态功能重要、战略地位特殊,研究其时空变化规律具有重要意义。本文基于1975年—2018年间10期Landsat卫星遥感影像,辅以2017年—2018年高分二号(GF-2)卫星遥感影像,在野外考察湿地类型及其覆被特征基础上,人机交互解译获取各期土地利用/覆被分类图,从面积变化、类型转化、景观格局变化方面分析了近43年白洋淀湿地变化时空特征,讨论了影响分析结果的不确定性因素以及湿地变化成因。结果表明:1975年—2018年白洋淀湿地面积总体呈减少趋势,净变化-68.20 km2(-24.83%)。其中,1975年—1990年湿地面积波动性小、基本稳定,1990年—2011年湿地面积持续性减少,2011年—2018年湿地面积呈现增加趋势。湿地与非湿地类型相互转换区域主要分布于淀区南部、西部、北部的水体—水生植物—耕地—建设用地过渡区域。近43年白洋淀湿地景观趋于破碎、复杂和异质。遥感影像选取月份、年份,以及土地利用/覆被分类体系、分类方法,是影响分析结果的主要不确定性因素。气候、水文等自然因素变化,叠加工农业及城镇生活用水、上游水利工程蓄水、地下水开采等人为因素变化,是白洋淀湿地面积减少、趋于干化的成因。  相似文献   

20.
利用TM高光谱图像提取青藏高原喀喇昆仑山区现代冰川边界   总被引:19,自引:0,他引:19  
采用阈值法、监督分类、非监督分类、谱间关系法对冰川的TM图像进行了分类,证明利用比值图像取阈值是对冰川区图像分类的有效手段。对图像处理的结果进行了分析和解释,并指出了存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号