首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Abstract

A novel artificial intelligence approach of Bayesian Logistic Regression (BLR) and its ensembles [Random Subspace (RS), Adaboost (AB), Multiboost (MB) and Bagging] was introduced for landslide susceptibility mapping in a part of Kamyaran city in Kurdistan Province, Iran. A spatial database was generated which includes a total of 60 landslide locations and a set of conditioning factors tested by the Information Gain Ratio technique. Performance of these models was evaluated using the area under the ROC curve (AUROC) and statistical index-based methods. Results showed that the hybrid ensemble models could significantly improve the performance of the base classifier of BLR (AUROC?=?0.930). However, RS model (AUROC?=?0.975) had the highest performance in comparison to other landslide ensemble models, followed by Bagging (AUROC?=?0.972), MB (AUROC?=?0.970) and AB (AUROC?=?0.957) models, respectively.  相似文献   

2.
Abstract

In this study, we introduced novel hybrid of evidence believe function (EBF) with logistic regression (EBF-LR) and logistic model tree (EBF-LMT) for landslide susceptibility modelling. Fourteen conditioning factors were selected, including slope aspect, elevation, slope angle, profile curvature, plan curvature, topographic wetness index (TWI), stream sediment transport index (STI), stream power index (SPI), distance to rivers, distance to faults, distance to roads, lithology, normalized difference vegetation index (NDVI), and land use. The importance of factors was assessed using correlation attribute evaluation method. Finally, the performance of three models was evaluated using the area under the curve (AUC). The validation process indicated that the EBF-LMT model acquired the highest AUC for the training (84.7%) and validation (76.5%) datasets, followed by EBF-LR and EBF models. Our result also confirmed that combination of a decision tree-logistic regression-based algorithm with a bivariate statistical model lead to enhance the prediction power of individual landslide models.  相似文献   

3.
Abstract

In this study, the main goal is to compare the predictive capability of Support Vector Machines (SVM) with four Bayesian algorithms namely Naïve Bayes Tree (NBT), Bayes network (BN), Naïve Bayes (NB), Decision Table Naïve Bayes (DTNB) for identifying landslide susceptibility zones in Pauri Garhwal district (India). First, landslide inventory map was built using 1295 historical landslide data, then in total sixteen influencing factors were selected and tested for landslide susceptibility modelling. Performance of the model was evaluated and compared using Statistical based index methods, Area under the Receiver Operating Characteristic (ROC) curve named AUC, and Chi-square method. Analysis results show that that the SVM has the highest prediction capability, followed by the NBT, DTNBT, BN and NB, respectively. Thus, this study confirms that the SVM is one of the benchmark models for the assessment of susceptibility of landslides.  相似文献   

4.
The main aim of this study was to produce landslide susceptibility maps using statistical index (SI), certainty factors (CF), weights of evidence (WoE) and evidential belief function (EBF) models for the Long County, China. Firstly, a landslide inventory map, including a total of 171 landslides, was compiled on the basis of earlier reports, interpretation of aerial photographs and supported by extensive field surveys. Thereafter, all landslides were randomly separated into two data sets: 70% landslides (120 points) were selected for establishing the model and the remaining landslides (51 points) were used for validation purposes. Eleven landslide conditioning factors, such as slope aspect, slope angle, plan curvature, profile curvature, altitude, distance to faults, distance to roads, distance to rivers, lithology, NDVI and land use, were considered for landslide susceptibility mapping in this study. Then, the SI, CF, WoE and EBF models were used to produce the landslide susceptibility maps for the study area. Finally, the four models were validated using area under the curve (AUC) method. According to the validation results, the EBF model (AUC = 78.93%) has a higher prediction accuracy than the SI model (AUC = 77.72%), the WoE model (AUC = 77.62%) and the CF model (AUC = 77.72%). Similarly, the validation results also indicate that the EBF model has the highest training accuracy of 80.25%, followed by SI (79.80%), WoE (79.71%) and CF (79.67%) models.  相似文献   

5.
The main aim of present study is to compare three GIS-based models, namely Dempster–Shafer (DS), logistic regression (LR) and artificial neural network (ANN) models for landslide susceptibility mapping in the Shangzhou District of Shangluo City, Shaanxi Province, China. At First, landslide locations were identified by aerial photographs and supported by field surveys, and a total of 145 landslide locations were mapped in the study area. Subsequently, the landslide inventory was randomly divided into two parts (70/30) using Hawths Tools in ArcGIS 10.0 for training and validation purposes, respectively. In the present study, 14 landslide conditioning factors such as altitude, slope angle, slope aspect, topographic wetness index, sediment transport index, stream power index, plan curvature, profile curvature, lithology, rainfall, distance to rivers, distance to roads, distance to faults and normalized different vegetation index were used to detect the most susceptible areas. In the next step, landslide susceptible areas were mapped using the DS, LR and ANN models based on landslide conditioning factors. Finally, the accuracies of the landslide susceptibility maps produced from the three models were verified using the area under the curve (AUC). The validation results showed that the landslide susceptibility map generated by the ANN model has the highest training accuracy (73.19%), followed by the LR model (71.37%), and the DS model (66.42%). Similarly, the AUC plot for prediction accuracy presents that ANN model has the highest accuracy (69.62%), followed by the LR model (68.94%), and the DS model (61.39%). According to the validation results of the AUC curves, the map produced by these models exhibits the satisfactory properties.  相似文献   

6.
Flood is one of the most devastating natural disasters with socio-economic and environmental consequences. Thus, comprehensive flood management is essential to reduce the flood effects on human lives and livelihoods. The main goal of this study was to investigate the application of the frequency ratio (FR) and weights-of-evidence (WofE) models for flood susceptibility mapping in the Golestan Province, Iran. At first, a flood inventory map was prepared using Iranian Water Resources Department and extensive field surveys. In total, 144 flood locations were identified in the study area. Of these, 101 (70%) floods were randomly selected as training data and the remaining 43 (30%) cases were used for the validation purposes. In the next step, flood conditioning factors such as lithology, land-use, distance from rivers, soil texture, slope angle, slope aspect, plan curvature, topographic wetness index (TWI) and altitude were prepared from the spatial database. Subsequently, the receiver operating characteristic (ROC) curves were drawn for produced flood susceptibility maps and the area under the curves (AUCs) was computed. The final results indicated that the FR (AUC = 76.47%) and WofE (AUC = 74.74%) models have almost similar and reasonable results. Therefore, these flood susceptibility maps can be useful for researchers and planner in flood mitigation strategies.  相似文献   

7.
The landslide hazard occurred in Taibai County has the characteristics of the typical landslides in mountain hinterland. The slopes mainly consist of residual sediments and locate along the highway. Most of them are in the less stable state and in high risk during rainfall in flood season especially. The main purpose of this paper is to produce landslide susceptibility maps for Taibai County (China). In the first stage, a landslide inventory map and the input layers of the landslide conditioning factors were prepared in the geographic information system supported by field investigations and remote sensing data. The landslides conditioning factors considered for the study area were slope angle, altitude, slope aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, normalized difference vegetation index, lithological unit, rainfall and land use. Subsequently, the thematic data layers of conditioning factors were integrated by frequency ratio (FR), weights of evidence (WOE) and evidential belief function (EBF) models. As a result, landslide susceptibility maps were obtained. In order to compare the predictive ability of these three models, a validation procedure was conducted. The curves of cumulative area percentage of ordered index values vs. the cumulative percentage of landslide numbers were plotted and the values of area under the curve (AUC) were calculated. The predictive ability was characterized by the AUC values and it indicates that all these models considered have relatively similar and high accuracies. The success rate of FR, WOE and EBF models was 0.9161, 0.9132 and 0.9129, while the prediction rate of the three models was 0.9061, 0.9052 and 0.9007, respectively. Considering the accuracy and simplicity comprehensively, the FR model is the optimum method. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

8.
Abstract

This study addresses landslide susceptibility mapping (LSM) using a novel ensemble approach of using a bivariate statistical method (weights of evidence [WoE] and evidential belief function [EBF])-based logistic model tree (LMT) classifier. The performance and prediction capability of the ensemble models were assessed using the area under the ROC curve (AUROC), standard error, 95% confidence intervals and significance level P. Model performance analyses indicated that the AUROC values of the WoE–LMT ensemble model using the training and validation data-sets were 86.02 and 85.9%, respectively, whereas those of the EBF–LMT ensemble model were 88.2 and 87.8%, respectively. On the other hand, the AUC curves for the four landslide susceptibility maps indicated that the AUC values of the ensemble models of WoE–LMT (85.11 and 83.98%) and EBF–LMT (86.21 and 85.23%) could improve the performance and prediction accuracy of single WoE (84.23 and 82.46%) and EBF (85.39 and 81.33%) models for the training and validation data-sets.  相似文献   

9.
The main objective of the study was to evaluate and compare the overall performance of three methods, frequency ratio (FR), certainty factor (CF) and index of entropy (IOE), for rainfall-induced landslide susceptibility mapping at the Chongren area (China) using geographic information system and remote sensing. First, a landslide inventory map for the study area was constructed from field surveys and interpretations of aerial photographs. Second, 15 landslide-related factors such as elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to faults, distance to rivers, distance to roads, landuse, NDVI, lithology and rainfall were prepared for the landslide susceptibility modelling. Using these data, three landslide susceptibility models were constructed using FR, CF and IOE. Finally, these models were validated and compared using known landslide locations and the receiver operating characteristics curve. The result shows that all the models perform well on both the training and validation data. The area under the curve showed that the goodness-of-fit with the training data is 79.12, 80.34 and 80.42% for FR, CF and IOE whereas the prediction power is 80.14, 81.58 and 81.73%, for FR, CF and IOE, respectively. The result of this study may be useful for local government management and land use planning.  相似文献   

10.
Geospatial database creation for landslide susceptibility mapping is often an almost inhibitive activity. This has been the reason that for quite some time landslide susceptibility analysis was modelled on the basis of spatially related factors. This paper presents the use of frequency ratio, fuzzy logic and multivariate regression models for landslide susceptibility mapping on Cameron catchment area, Malaysia, using a Geographic Information System (GIS) and remote sensing data. Landslide locations were identified in the study area from the interpretation of aerial photographs, high resolution satellite images, inventory reports and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing tools. There were nine factors considered for landslide susceptibility mapping and the frequency ratio coefficient for each factor was computed. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land cover from TM satellite image; the vegetation index value from Landsat satellite images; and precipitation distribution from meteorological data. Using these factors the fuzzy membership values were calculated. Then fuzzy operators were applied to the fuzzy membership values for landslide susceptibility mapping. Further, multivariate logistic regression model was applied for the landslide susceptibility. Finally, the results of the analyses were verified using the landslide location data and compared with the frequency ratio, fuzzy logic and multivariate logistic regression models. The validation results showed that the frequency ratio model (accuracy is 89%) is better in prediction than fuzzy logic (accuracy is 84%) and logistic regression (accuracy is 85%) models. Results show that, among the fuzzy operators, in the case with “gamma” operator (λ = 0.9) showed the best accuracy (84%) while the case with “or” operator showed the worst accuracy (69%).  相似文献   

11.
This paper aims at providing an answer as to whether generalization obtained with data-driven modelling can be used to gauge the plausibility of the physically based (PB) model’s prediction. Two statistical models namely; Weight of Evidence (WofE) and Logistic Regression (LR), and a PB model using the infinite slope assumptions were evaluated and compared with respect to their abilities to predict susceptible areas to shallow landslides at the 1:10.000 urban scale. Threshold-dependent performance metrics showed that the three methods produced statistically comparable results in terms of success and prediction rates. However, with the Area Under the receiver operator Curve (AUC), statistical models are more accurate (88.7 and 84.6% for LR and WofE, respectively) than the PB model (only 69.8%). Nevertheless, in such data-sparse situation, the usual approaches for validation, i.e. comparing observed with predicted data, are insufficient, formal uncertainty analysis (UA) is a means for evaluating the validity and reliability of the model. We then refitted the PB model using a stochastic modification of the infinite slope stability model input scheme using Monte Carlo (MC) method backed with sensitivity analysis (SA). For statistical models, we used an informal Student t-test for estimating the certainty of the predicted probability (PP) at each location. Both modelling outputs independently show a high validity; and whereas the level of confidence in LR and WofE models remained the same after performance re-evaluation, the accuracy of the PB model showed an improvement (AUC = 72%). This result is reasonable and provides a further validation of PB model. So, in urban slope analysis, where PB diagnostic is necessary, statistical and PB modelling may play equally supportive roles in landslide hazard assessment.  相似文献   

12.
Abstract

The standards applied to reclassify landslide-conditioning factors differ among studies and may change the accuracy of identifying landslide-prone areas. Therefore, we identified two standards per factor (elevation, aspect, slope, proximity to roads and proximity to streams) from the existing literature and set them as predisposing criteria in this paper. In addition to the five factors, lithology represented by types and a landslide inventory map produced from field surveys were also used in mapping. Thirty-two landslide susceptibility maps were generated based on weights-of-evidence and evaluated using the relative operative characteristic method. The results show that the subdivision criteria of factors change the accuracy, with the success rate varying from 84.34% to 87.51%. The map with the highest value captures more landslides in relatively higher susceptibility classes and is therefore considered the optimal one. Ultimately, a simplified mode of combining subdivision criteria is proposed to simplify comparison.  相似文献   

13.
This study evaluates and compares landslide susceptibility maps of the Baxie River basin, Gansu Province, China, using three models: evidential belief function (EBF), certainty factor (CF) and frequency ratio (FR). First, a landslide inventory map is constructed from satellite image interpretation and extensive field data. Second, the study area is partitioned into 17,142 slope units, and modelled using nine landslide influence parameters: elevation, slope angle, slope aspect, relief amplitude, cutting depth, gully density, lithology, normalized difference vegetation index and distance to roads. Finally, landslide susceptibility maps are presented based on EBF, CF and FR models and validated using area under curve (AUC) analysis. The success rates of the EBF, CF and FR models are 0.8038, 0.7924 and 0.8088, respectively, while the prediction rates of the three models are 0.8056, 0.7922 and 0.7989, respectively. The result of this study can be reliably used in land use management and planning.  相似文献   

14.
Natural hazards constitute a diverse category and are unevenly distributed in time and space. This hinders predictive efforts, leading to significant impacts on human life and economies. Multi-hazard prediction is vital for any natural hazard risk management plan. The main objective of this study was the development of a multi-hazard susceptibility mapping framework, by combining two natural hazards—flooding and landslides—in the North Central region of Vietnam. This was accomplished using support vector machines, random forest, and AdaBoost. The input data consisted of 4591 flood points, 1315 landslide points, and 13 conditioning factors, split into training (70%), and testing (30%) datasets. The accuracy of the models' predictions was evaluated using the statistical indices root mean square error, area under curve (AUC), mean absolute error, and coefficient of determination. All proposed models were good at predicting multi-hazard susceptibility, with AUC values over 0.95. Among them, the AUC value for the support vector machine model was 0.98 and 0.99 for landslide and flood, respectively. For the random forest model, these values were 0.98 and 0.98, and for AdaBoost, they were 0.99 and 0.99. The multi-hazard maps were built by combining the landslide and flood susceptibility maps. The results showed that approximately 60% of the study area was affected by landslides, 30% by flood, and 8% by both hazards. These results illustrate how North Central is one of the regions of Vietnam that is most severely affected by natural hazards, particularly flooding, and landslides. The proposed models adapt to evaluate multi-hazard susceptibility at different scales, although expert intervention is also required, to optimize the algorithms. Multi-hazard maps can provide a valuable point of reference for decision makers in sustainable land-use planning and infrastructure development in regions faced with multiple hazards, and to prevent and reduce more effectively the frequency of floods and landslides and their damage to human life and property.  相似文献   

15.
Landslides susceptibility maps were constructed in the Pyeong-Chang area, Korea, using the Random Forest and Boosted Tree models. Landslide locations were randomly selected in a 50/50 ratio for training and validation of the models. Seventeen landslide-related factors were extracted and constructed in a spatial database. The relationships between the observed landslide locations and these factors were identified by using the two models. The models were used to generate a landslide susceptibility map and the importance of the factors was calculated. Finally, the landslide susceptibility maps were validated. Finally, landslide susceptibility maps were generated. For the Random Forest model, the validation accuracy in regression and classification algorithms showed 79.34 and 79.18%, respectively, and for the Boosted Tree model, these were 84.87 and 85.98%, respectively. The two models showed satisfactory accuracies, and the Boosted Tree model showed better results than the Random Forest model.  相似文献   

16.
In this paper, GIS-based ordered weighted averaging (OWA) is applied to landslide susceptibility mapping (LSM) for the Urmia Lake Basin in northwest Iran. Nine landslide causal factors were used, whereby the respective parameters were extracted from an associated spatial database. These factors were evaluated, and then the respective factor weight and class weight were assigned to each of the associated factors using analytic hierarchy process (AHP). A landslide susceptibility map was produced based on OWA multicriteria decision analysis. In order to validate the result, the outcome of the OWA method was qualitatively evaluated based on an existing inventory of known landslides. Correspondingly, an uncertainty analysis was carried out using the Dempster–Shafer theory. Based on the results, very strong support was determined for the high susceptibility category of the landslide susceptibility map, while strong support was received for the areas with moderate susceptibility. In this paper, we discuss in which respect these results are useful for an improved understanding of the effectiveness of OWA in LSM, and how the landslide prediction map can be used for spatial planning tasks and for the mitigation of future hazards in the study area.  相似文献   

17.
In this study, landslide susceptibility assessments were achieved using logistic regression, in a 523 km2 area around the Eastern Mediterranean region of Southern Turkey. In reliable landslide susceptibility modeling, among others, an appropriate landslide sampling technique is always essential. In susceptibility assessments, two different random selection methods, ranging 78–83% for the train and 17–22% validation set in landslide affected areas, were applied. For the first, the landslides were selected based on their identity numbers considering the whole polygon while in the second, random grid cells of equal size of the former one was selected in any part of the landslides. Three random selections for the landslide free grid cells of equal proportion were also applied for each of the landslide affected data set. Among the landslide preparatory factors; geology, landform classification, land use, elevation, slope, plan curvature, profile curvature, slope length factor, solar radiation, stream power index, slope second derivate, topographic wetness index, heat load index, mean slope, slope position, roughness, dissection, surface relief ratio, linear aspect, slope/aspect ratio have been considered. The results showed that the susceptibility maps produced using the random selections considering the entire landslide polygons have higher performances by means of success and prediction rates.  相似文献   

18.
The purpose of this study was to investigate and compare the capabilities of four machine learning methods namely LogitBoost Ensemble (LBE), Fisher’s Linear Discriminate Analysis (FLDA), Logistic Regression (LR) and Support Vector Machines (SVM) to select the best method for landslide susceptibility mapping. A part of landslide prone area of Tehri Garhwal district of Uttarakhand state, India, was selected as a case study. Validation of models was carried out using statistical analysis, the chi square test and the Receiver Operating Characteristic (ROC) curve. Result analysis shows that the LBE has the highest prediction ability (AUC = 0.972) for landslide susceptibility mapping, followed by the SVM (0.945), the LR (0.873) and the FLDA (0.870), respectively. Therefore, the LBE is the best and a promising method in comparison to other three models for landslide susceptibility mapping.  相似文献   

19.
The term landslide includes a wide range of ground movements, such as slides, falls, flows etc. mainly based on gravity with the aid of several conditioning and triggering factors. Particularly in the last two decades, there has been an increasing international interest in the landslide susceptibility, hazard or risk assessments. In this paper we present a combined use of socioeconomic, remote sensing and GIS data for developing a technique for landslide susceptibility mapping using artificial neural networks and then to apply the technique to the selected study areas at Nilgiris district in Tamil Nadu and to analyze the socio economic impact in the landslide locations.  相似文献   

20.
This study employed GIS modelling to ascertain landslide susceptibility on Mt. Umyeon, south of Seoul, South Korea. In this study, an effective contributing area (ECA) for certain drainage time was purposed as a temporal causative factor and then used for modelling in combination with spatial causative factors such as elevation, slope, plan curvature, drainage proximity, forest type, soil type and geology. Landslide inventory map of 163 landslide locations was prepared using aerial photographic interpretation and field verifications after that digitized using GIS environment in 1:5000 scale. A presence-only-based maximum entropy model was used to establish and analyse the relationship between landslides and causative factors. Before final modelling, a jackknife test was performed to measure the variable contributions, which showed that the slope was the most significant spatial causative factor, and ECA with a drainage time of 12 h was the most significant temporal causative factor. The performances of the final models, with and without significant ECA, were assessed by plotting a receiver operating characteristic curve to be 75.5 and 81.2%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号