首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

An important methodological and analytical requirement for analyzing spatial relationships between regional habitats and species distributions in Mexico is the development of standard methods for mapping the country's land cover/land use formations. This necessarily involves the use of global data such as that produced by the Advanced Very High Resolution Radiometer (AVHRR). We created a nine‐band time‐series composite image from AVHRR Normalized Difference Vegetation Index (NDVI) bi‐weekly data. Each band represented the maximum NDVI for a particular month of either 1992 or 1993. We carried out a supervised classification approach, using the latest comprehensive land cover/vegetation map created by the Mexican National Institute of Geography (INEGI) as reference data. Training areas for 26 land cover/vegetation types were selected and digitized on the computer's screen by overlaying the INEGI vector coverage on the NDVI image. To obtain specific spectral responses for each vegetation type, as determined by its characteristic phenology and geographic location, the statistics of the spectral signatures were subjected to a cluster analysis. A total of 104 classes distributed among the 26 land cover types were used to perform the classification. Elevation data were used to direct classification output for pine‐oak and coastal vegetation types. The overall correspondence value of the classification proposed in this paper was 54%; however, for main vegetation formations correspondence values were higher (60‐80%). In order to obtain refinements in the proposed classification we recommend further analysis of the signature statistics and adding topographic data into the classification algorithm.  相似文献   

2.
In this study, we tested whether terrain-based visibility modelled from a remotely sensed ASTER Digital Elevation Model (DEM) explains sable flight initiation distance (FID) better than vegetation-based visibility measured in the field. We also tested whether the effect of hunting on sable FID varies with spatial scale. We first performed a linear regression analysis relating FID to standardized coefficients of both vegetation- and terrain-based visibility where the variable with the larger coefficient was the better predictor of FID. We latter performed an analysis of covariance (ANCOVA) comparing the slopes relating FID to both measures of visibility, first at the large scale and later at the small scale within the hunting area. Our results suggest that remotely sensed terrain-based visibility predicts the FID of sable better than vegetation-based visibility. We also found that the effect of hunting on sable FID varies with spatial scale.  相似文献   

3.
Abstract

Large areas in the Czech Republic were used for open casts of brown coal mining. Many of them have been already closed. Reclamation of them and of their dumps is the next step intheir development. It is possible to divide used reclamations into the forest, hydrologic, agricultural and other ones – roads, etc. Their age varies from 45 years to as yet unfinished. Reclaimed areas are documented in reclamation projects. Information about age and land use determined groups of these areas to be evaluated by vegetation indices. 100 areas with forest type were evaluated. Eight vegetation indices (NDVI, DVI, RVI, PVI, SAVI, MSAVI, TSAVI and EVI) were calculated and their average value in each area in 1988, 1992 and 1998 Thematic Mapper data were compared. Changes over years showed close relation to precipitations of previous periods. This relation was confirmed by evaluation of forest areas situated near reclamation areas. Positive/negative changes of vegetation indices were different for different groups and different vegetation indices. An overview of results of vegetation indices is presented for individual areas whose land use comprised at least partly forest stand. Results in a 4-year period (1988–1992) were in many areas by many indices negative, changes in 10 years were in most areas by most vegetation indices positive. Changes, minimum values and maximum values in groups were compared. Evaluation of vegetation indices brought again various results. One vegetation index is not sufficient to prove improvement/deterioration of vegetation changes. Precipitation state before measurement should be controlled. Temporary shortage of precipitation can cause vegetation cover deterioration, which is also only temporary. The best development derived from vegetation indices evaluation was found at forest reclamation with mixed tree stand that was 10–20 years old. The method was derived as a tool for post-finishing control of vegetation development of reclamations performed in several year periods.  相似文献   

4.
Spatial resolution of environmental data may influence the results of habitat selection models. As high-resolution data are usually expensive, an assessment of their contribution to the reliability of habitat models is of interest for both researchers and managers. We evaluated how vegetation cover datasets of different spatial resolutions influence the inferences and predictive power of multi-scale habitat selection models for the endangered brown bear populations in the Cantabrian Range (NW Spain). We quantified the relative performance of three types of datasets: (i) coarse resolution data from Corine Land Cover (minimum mapping unit of 25 ha), (ii) medium resolution data from the Forest Map of Spain (minimum mapping unit of 2.25 ha and information on forest canopy cover and tree species present in each polygon), and (iii) high-resolution Lidar data (about 0.5 points/m2) providing a much finer information on forest canopy cover and height. Despite all the models performed well (AUC > 0.80), the predictive ability of multi-scale models significantly increased with spatial resolution, particularly when other predictors of habitat suitability (e.g. human pressure) were not used to indirectly filter out areas with a more degraded vegetation cover. The addition of fine grain information on forest structure (LiDAR) led to a better understanding of landscape use and a more accurate spatial representation of habitat suitability, even for a species with large spatial requirements as the brown bear, which will result in the development of more effective measures to assist endangered species conservation.  相似文献   

5.
基于TM影像的城市建筑用地信息提取方法研究   总被引:2,自引:0,他引:2  
本文选用金华市Landsat TM影像为研究的数据源,在归一化裸露指数基础上,利用归一化植被指数提取出非植被信息,通过图像二值化、叠加分析以及掩膜处理去除了低密度植被覆盖区域的噪音信息,自动提取了金华城市建筑用地信息。研究结果表明,归一化裸露指数和归一化植被指数相结合的方法弥补了单一利用归一化裸露指数来提取城市建筑用地信息的不足,提高了提取精度,而且结果客观可信,是一种不经人为干预的、快速有效的提取城市建筑用地方法。  相似文献   

6.
The amount and distribution of vegetation and ground cover are important factors that influence resource transfer (e.g. runoff, sediment) in patterned semi-arid landscapes. Identifying and describing these features in detail is an essential part of measuring and understanding ecohydrological processes at hillslope scales that can then be applied at broader scales. The aim of this study was to develop a comprehensive methodology to map ground cover using high resolution Quickbird imagery in woody and non-woody (pasture) vegetation. The specific goals were to: (1) investigate the use of several techniques of image fusion, namely principal components analysis (PCA), Brovey transform, modified intensity-hue-saturation (MIHS) and wavelet transform to increase the spatial detail of multispectral Quickbird data; (2) evaluate the performance of the red and near-infra-red bands (NIR), the difference vegetation index (DVI), and the normalised difference vegetation index (NDVI) in estimating ground cover, and (3) map and assess spatial and temporal changes in ground cover at hillslope scale using the most appropriate method or combination of methods. Estimates of ground cover from the imagery were compared with a subset of observed ground cover estimates to determine map accuracy. The MIHS algorithm produced images that best preserved spectral and spatial integrity, while the red band fused with the panchromatic band produced the most accurate ground cover maps. The patch size of the ground cover beneath canopies was similar to canopy size, and percent ground cover (mainly litter) increased with canopy size. Ground cover was mapped with relative accuracies of 84% in the woody vegetation and 86% in the pasture. From 2008 to 2009, ground cover increased from 55% to 65% in the woody vegetation and from 40% to 45% in the pasture. These ground cover maps can be used to explore the spatial ecohydrological interactions between areas of different ground cover at hillslope scale with application to management at broader scales.  相似文献   

7.
The relative abundance and distribution of trees in savannas has important implications for ecosystem function. High spatial resolution satellite sensors, including QuickBird and IKONOS, have been successfully used to map tree cover patterns in savannas. SPOT 5, with a 2.5 m panchromatic band and 10 m multispectral bands, represents a relatively coarse resolution sensor within this context, but has the advantage of being relatively inexpensive and more widely available. This study evaluates the performance of NDVI threshold and object based image analysis techniques for mapping tree canopies from QuickBird and SPOT 5 imagery in two savanna systems in southern Africa. High thematic mapping accuracies were obtained with the QuickBird imagery, independent of mapping technique. Geometric properties of the mapping indicated that the NDVI threshold produced smaller patch sizes, but that overall patch size distributions were similar. Tree canopy mapping using SPOT 5 imagery and an NDVI threshold approach performed poorly, however acceptable thematic accuracies were obtained from the object based image analysis. Although patch sizes were generally larger than those mapped from the QuickBird image data, patch size distributions mapped with object based image analysis of SPOT 5 have a similar form to the QuickBird mapping. This indicates that SPOT 5 imagery is suitable for regional studies of tree canopy cover patterns.  相似文献   

8.
Land cover changes associated with urbanisation modify microclimate, leading to urban heat islands, whereby cities are warmer than the surrounding countryside. Understanding the factors causing this phenomenon could help urban areas adapt to climate change and improve living conditions of inhabitants. In this study, land surface temperatures (LST) of Aarhus, a city in the high latitudes, are estimated from the reflectance of a thermal band (TIRS1; Band 10; 10.60–11.19 μm) of Landsat 8 on five dates in the summer months (one in 2015, and four in 2018). Spectral indices, modelled on the normalised difference vegetation index (NDVI), using all combinations of the first seven bands of Landsat 8 are calculated and their relationships with LST, analysed. Land cover characteristics, in terms of the percentages of tree cover, building cover and overall vegetation cover are estimated from airborne LiDAR data, building footprints and 4-band aerial imagery, respectively. The correlations between LST, the spectral indices and land cover are estimated.The difference in mean temperature between the rural and urban parts of Aarhus is up to 3.96 °C, while the difference between the warmer and colder zones (based on the mean and SD of LST) is up to 13.26 °C. The spectral index using the near infrared band (NIR; Band 5; 0.85-0.88 μm) and a short-wave infrared band (SWIR2; Band 7; 2.11–2.29 μm) has the strongest correlations (r: 0.62 to 0.89) with LST for the whole study area. This index is the inverse of normalised burn ratio (NBR), which has been used for mapping burnt areas. Spectral indices using different combinations of the infrared bands have stronger correlations with LST than the more widely used vegetation indices such as NDVI. The percentage of tree cover has a higher negative correlation (Pearson’s r: -0.68 to -0.75) with LST than overall vegetation cover (r: -0.45 to -0.63). Tree cover and building cover (r: 0.53 to 0.71) together explain up to 68 % of the variation in LST. Modification of tree and building cover may therefore have the potential to regulate urban LST.  相似文献   

9.
基于地面试验的植被覆盖率估算模型及其影响因素研究   总被引:1,自引:0,他引:1  
以植被覆盖率的遥感反演为研究主线,以玉米作物为例,在基于地面试验获得作物光谱、叶面积指数和多角度覆盖率的基础上,对目前普遍采用的两种基于植被指数的植被覆盖率估算模型进行了精度比较,同时对植被覆盖率反演的影响因子(叶面积指数、植被空间分布和观测角度)进行了分析.由此得到:估算植被覆盖率的最优植被指数为归一化植被指数;叶面积指数对植被指数与植被覆盖率间关系的影响随植被的生长不断增大;植被空间分布对垂直覆盖率的估算影响很小.对于多角度覆盖率有这样的规律,即在4种空间分布下,以0°观测天顶角(VZA)为中心,在相反方位角上随VZA的增加,覆盖率值基本呈对称分布;在玉米刚出苗时,覆盖率随VZA的增加而增加,当VZA=0°时达到最小值,而随着玉米的进一步生长,4种分布条件下覆盖率随VZA的增加反而降低,在VZA=0°时达到最大值.  相似文献   

10.
ABSTRACT

East Rennell of Solomon Island is the first natural site under customary law to be inscribed on UNESCO’s World Heritage List. Potential threats due to logging, mining and agriculture led to the site being declared a World Heritage in Danger in 2013. For East Rennell World Heritage Site (ERWHS) to ‘shed’ its ‘Danger’ status the management must monitor forest cover both within and outside of ERWHS. We used satellite data from multiple sources to track forest cover changes for the entire East Rennell island since 1998. 95% of the island is still covered by undisturbed forests; annual average normalized difference vegetation index (NDVI) for the whole island was above 0.91 in 2015. However, vegetation cover in the island has been slowly decreasing, at a rate of –0.0011 NDVI per year between 2000 and 2015. This decrease less pronounced inside ERWHS compared to areas outside. While potential threats due to forest clearing outside ERWHS remain the forest cover change from 2000 to 2015 has been below 15%. We suggest ways in which the Government of Solomon Islands could use our data as well as unmanned air vehicles and field surveys to monitor forest cover change and ensure the future conservation of ERWHS.  相似文献   

11.
Erosion reduces soil productivity and causes negative downstream impacts. Erosion processes occur on areas with erodible soils and sloping terrain when high-intensity rainfall coincides with limited vegetation cover. Timing of erosion events has implications on the selection of satellite imagery, used to describe spatial patterns of protective vegetation cover. This study proposes a method for erosion risk mapping with multi-temporal and multi-resolution satellite data. The specific objectives of the study are: (1) to determine when during the year erosion risk is highest using coarse-resolution data, and (2) to assess the optimal timing of available medium-resolution images to spatially represent vegetation cover during the high erosion risk period. Analyses were performed for a 100-km2 pasture area in the Brazilian Cerrados. The first objective was studied by qualitatively comparing three-hourly TRMM rainfall estimates with MODIS NDVI time series for one full year (August 2002–August 2003). November and December were identified as the months with highest erosion risk. The second objective was examined with a time series of six available ASTER images acquired in the same year. Persistent cloud cover limited image acquisition during high erosion risk periods. For each ASTER image the NDVI was calculated and classified into five equally sized classes. Low NDVI was related to high erosion risk and vice versa. A DEM was used to set approximately flat zones to very low erosion risk. The six resulting risk maps were compared with erosion features, visually interpreted from a fine-resolution QuickBird image. Results from the October ASTER image gave highest accuracy (84%), showing that erosion risk mapping in the Brazilian Cerrados can best be performed with images acquired shortly before the first erosion events. The presented approach that uses coarse-resolution temporal data for determining erosion periods and medium-resolution data for effective erosion risk mapping is fast and straightforward. It shows good potential for successful application in other areas with high spatial and temporal variability of vegetation cover.  相似文献   

12.
以新疆渭干河——库车河绿洲及其周边地区为研究区,在野外调查的基础上,基于Aster数据,利用NDVI、植被盖度作为特征变量,结合偏最小二乘回归法模型反演得到的盐分含量(SSC)指标作为决策树分类的各节点的判别函数,通过决策树分类方法实现了沙化土地信息的提取与制图。结果表明结合植被覆盖信息与土壤特性能够在提取沙化信息的同时区分出盐渍化土壤,结果与野外调查较为一致。该研究为大区域土壤沙化信息提取与制图提供了较好的方法。  相似文献   

13.
Restoration interventions to combat land degradation are carried out in arid and semi-arid areas to improve vegetation cover and land productivity. Evaluating the success of an intervention over time is challenging due to various constraints (e.g. difficult-to-access areas, lack of long-term records) and the lack of standardised and affordable methodologies. We propose a semi-automatic methodology that uses remote sensing data to provide a rapid, standardised and objective assessment of the biophysical impact, in terms of vegetation cover, of restoration interventions. The Normalised Difference Vegetation Index (NDVI) is used as a proxy for vegetation cover. Recognising that changes in vegetation cover are naturally due to environmental factors such as seasonality and inter-annual climate variability, conclusions about the success of the intervention cannot be drawn by focussing on the intervention area only. We therefore use a comparative method that analyses the temporal variations (before and after the intervention) of the NDVI of the intervention area with respect to multiple control sites that are automatically and randomly selected from a set of candidates that are similar to the intervention area. Similarity is defined in terms of class composition as derived from an ISODATA classification of the imagery before the intervention. The method provides an estimate of the magnitude and significance of the difference in greenness change between the intervention area and control areas. As a case study, the methodology is applied to 15 restoration interventions carried out in Senegal. The impact of the interventions is analysed using 250-m MODIS and 30-m Landsat data. Results show that a significant improvement in vegetation cover was detectable only in one third of the analysed interventions, which is consistent with independent qualitative assessments based on field observations and visual analysis of high resolution imagery. Rural development agencies may potentially use the proposed method for a first screening of restoration interventions.  相似文献   

14.
This study examines the understorey information present in discrete-return LiDAR (Light Detection And Ranging) data acquired for temperate deciduous woodland in mid summer (leaf-on) and in early spring when the understorey had mostly leafed out, but the overstorey had only just begun budburst (referred to here as leaf-off). The woodland is ancient, semi-natural broadleaf and has a heterogeneous structure with a mostly closed canopy overstorey and a patchy understorey layer. In this study, the understorey was defined as suppressed trees and shrubs growing beneath an overstorey canopy. Forest mensuration data for the study site were examined to identify thresholds (taking the 95th percentile) for crown depth as a percentage of crown top height for the six overstorey tree species present. These data were used in association with a digital tree species map and leaf-on first return LiDAR data, to identify the possible depth of space available below the overstorey canopy in which an understorey layer could exist. The leaf-off last return LiDAR data were then examined to identify whether they contained information on where this space was occupied by suppressed trees or shrubs forming an understorey. Thus, understorey was mapped from the leaf-off last return data where the height was below the predicted crown depth. A height threshold of 1 m was applied to separate the ground vegetation layer from the understorey. The derived understorey model formed a discontinuous layer covering 46.4 ha (or 31% of the study site), with an average height of 2.64 m and a 77% correspondence with field data on the presence/absence of suppressed trees and shrubs (kappa 0.53). Because the first return data in leaf-on and leaf-off conditions were very similar (differing by an average of just 0.87 m), it was also possible to map the understorey layer using leaf-off data alone. The resultant understorey model covered 39.4 ha (or 26% of the study site), and had a 72% correspondence with field data on the presence/absence of suppressed trees and shrubs (kappa 0.45). This moderate reduction in the area of understorey mapped and associated accuracy came with a saving of half of all data acquisition and pre-processing costs. Whilst the understorey modelling presented here undoubtedly benefited from the specific timing of LiDAR data acquisition and from ancillary data available for the study site, the conclusions have resonance beyond this case study. Given that the understorey and overstorey canopies in lowland broadleaf woodland can merge into one another, the modelling of understorey information from discrete-return LiDAR data must consider overstorey canopy characteristics and laser penetration through the overstorey. It is not adequate in such circumstances to apply simple height thresholds to LiDAR height frequency distributions, as this is unlikely to distinguish whether a return has backscattered from the lower parts of the overstorey canopy or from near the surface of the understorey canopy.  相似文献   

15.
The goal of this study was to evaluate whether harmonic regression coefficients derived using all available cloud-free observations in a given Landsat pixel for a three-year period can be used to estimate tree canopy cover (TCC), and whether models developed using harmonic regression coefficients as predictor variables are better than models developed using median composite predictor variables, the previous operational standard for the National Land Cover Database (NLCD). The two study areas in the conterminous USA were as follows: West (Oregon), bounded by Landsat Worldwide Reference System 2 (WRS-2) paths/rows 43/30, 44/30, and 45/30; and South (Georgia/South Carolina), bounded by WRS-2 paths/rows 16/37, 17/37, and 18/37. Plot-specific tree canopy cover (the response variable) was collected by experienced interpreters using a dot grid overlaid on 1 m spatial resolution National Agricultural Imagery Program (NAIP) images at two different times per region, circa 2010 and circa 2014. Random forest model comparisons (using 500 independent model runs for each comparison) revealed the following (1) harmonic regression coefficients (one harmonic) are better predictors for every time/region of TCC than median composite focal means and standard deviations (across times/regions, mean increase in pseudo R2 of 6.7% and mean decrease in RMSE of 1.7% TCC) and (2) harmonic regression coefficients (one harmonic, from NDVI, SWIR1, and SWIR2), when added to the full suite of median composite and terrain variables used for the NLCD 2011 product, improve the quality of TCC models for every time/region (mean increase in pseudo R2 of 3.6% and mean decrease in RMSE of 1.0% TCC). The harmonic regression NDVI constant was always one of the top four most important predictors across times/regions, and is more correlated with TCC than the NDVI median composite focal mean. Eigen analysis revealed that there is little to no additional information in the full suite of predictor variables (47 bands) when compared to the harmonic regression coefficients alone (using NDVI, SWIR1, and SWIR2; 9 bands), a finding echoed by both model fit statistics and the resulting maps. We conclude that harmonic regression coefficients derived from Landsat (or, by extension, other comparable earth resource satellite data) can be used to map TCC, either alone or in combination with other TCC-related variables.  相似文献   

16.
Detecting soil salinity changes and its impact on vegetation cover are necessary to understand the relationships between these changes in vegetation cover. This study aims to determine the changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and investigates whether the salinity change causing the change in vegetation cover. Landsat time series data of years 1985, 2000 and 2013 were used to generate Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity during 2000–2013 exhibits much higher increase compared to 1985–2000, while the vegetation cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) negative relationships found between the NDVI and SI differencing images, confirmed the potential long-term linkage between the changes in soil salinity and vegetation cover.  相似文献   

17.
The urban heat island (UHI) is increasingly recognized as a serious, worldwide problem because of urbanization and climate change. Urban vegetation is capable of alleviating UHI and improving urban environment by shading together with evapotranspiration. While the impacts of abundance and spatial configuration of vegetation on land surface temperature (LST) have been widely examined, very little attention has been paid to the role of vertical structure of vegetation in regulating LST. In this study, we investigated the relationships between horizontal/vertical structure characteristics of urban tree canopy and LST as well as diurnal divergence in Nanjing City, China, with the help of high resolution vegetation map, Light Detection and Ranging (LiDAR) data and various statistical analysis methods. The results indicated that composition, configuration and vertical structure of tree canopy were all significantly related to both daytime LST and nighttime LST. Tree canopy showed stronger influence on LST during the day than at night. Note that the contribution of composition of tree canopy to explaining spatial heterogeneity of LST, regardless of day and night, was the highest, followed by vertical structure and configuration. Combining composition, configuration and vertical structure of tree canopy can take advantage of their respective advantages, and best explain variation in both daytime LST and nighttime LST. As for the independent importance of factors affecting spatial variation of LST, percent cover of tree canopy (PLAND), mean tree canopy height (TH_Mean), amplitude of tree canopy height (TA) and patch cohesion index (COHESION) were the most influential during the day, while the most important variables were PLAND, maximum height of tree canopy (TH_Max), variance of tree canopy height (TH_SD) and COHESION at night. This research extends our understanding of the impacts of urban trees on the UHI effect from the horizontal to three-dimensional space. In addition, it may offer sustainable and effective strategies for urban designers and planners to cope with increasing temperature.  相似文献   

18.
基于卫星遥感数据的地表信息特征--NDVI-Ts空间描述   总被引:9,自引:0,他引:9  
介绍了基于卫星遥感数据的可操作NDVI、Ts和Ts/NDVI计算方法,讨论了NDVI、Ts和Ts/NDVI数据对植被覆盖信息表达的差异,分析了不同地表覆盖在NDVI—Ts空间的年内变化特征。利用信息熵和平均梯度定量分析了NDVI、Ts和Ts/NDVI数据在信息表达丰富度方面的差异,讨论了在不同地表植被覆盖下,Ts/NDVI数据信息提高程度的敏感性。  相似文献   

19.
针对全国地理国情监测工作新增树冠覆盖提取这一全新的工作任务,本文通过深入分析房屋建筑区主要地物光谱特征和纹理特征,确定以光谱特征归一化植被指数(NDVI),以及对比度(contrast)信息熵(entropy)两个纹理特征作为判断规则,按照面向对象的思路,设计了一种综合应用高分辨率遥感影像光谱特征和纹理特征的房屋建筑区树冠覆盖范围提取方法。试验结果表明,该方法能够自动提取房屋建筑区树冠覆盖范围,大幅降低了当前常用的目视解译方法的工作量,与采用单一影像特征的提取方法相比,本文方法能够有效地区分房屋建筑区内与树冠覆盖光谱特征相近的地物要素。  相似文献   

20.
植被是干旱区生态建设重要的组成部分,而植被覆盖度是生态环境变化的重要指示,是评价生态系统健康的前提条件。本文在遥感等技术的支持下,以landsatTM影像为数据源,选用归一化植被指数(NDVI)和线性光谱混合分析模型(LSMM)两种方法进行分析比较,提取吐鲁番市近20年植被覆盖度,并对该地区植被覆盖度的演变特征进行分析。结果表明:①LSMM方法能较好地提取干旱区植被信息,指标简单且分类精度较高。②NDVI方法提取植被时,受到很多限制,在干旱区不宜采用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号