首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
智能手机凭借其普遍性、便携性和低成本等优势,已成为大众用户导航与位置服务的主流终端载体,其多频多系统GNSS(global navigation satellite system)观测值的开放进一步激发了手机高精度定位的研究。然而,受限于消费级GNSS器件性能,手机卫星观测值呈现出信号衰减严重、伪距噪声大、粗差周跳多等问题;并且受城市复杂环境影响,手机GNSS定位的连续性、可靠性也难以保证。提出一种城市场景手机GNSS/ MEMS(micro-electro mechanical system)融合的车载高精度定位方案。首先,构建了速度约束的GNSS差分定位模型;然后,通过手机内置MEMS与车辆运动约束,在挑战环境下进行GNSS/MEMS融合精密定位。实验结果表明,在开阔和树荫场景下,速度约束方法可达到分米至米级定位精度,相比于常规方法分别提升了35.2%和78.9%;在高架场景下,GNSS/MEMS融合定位的精度和连续性均提升显著;在隧道场景下,MEMS推算位置累积误差约为2.5%。实验结果初步表明,手机GNSS具备开阔环境下的车道级定位能力,手机GNSS/MEMS融合可提升城市复杂环境下车载定位的精度和连续可用性。  相似文献   

2.
全球卫星导航系统(GNSS)在弱信号环境下,GNSS信号易受到遮挡或者电磁干扰,严重影响导航定位的可靠性、连续性和精度. 针对此问题,本文作者研究了一种GNSS和视觉观测紧组合导航定位方法. 首先基于相机采集图像数据,利用ORB-SLAM2开源平台求解得到视觉位置结果增量,再联合GNSS伪距观测数据采用卡尔曼滤波(KF)进行组合定位解算. 采用实测的GNSS伪距观测数据和图像数据进行测试,试验结果表明:该算法不仅能有效地提升GNSS弱信号环境下导航定位的连续性和精度,还能在卫星数少于4颗时保持持续导航定位.   相似文献   

3.
针对城市环境下全球导航卫星系统(global navigation satellite system,GNSS)信号严重遮挡和微机械惯性测量单元(micro-electro-mechanical system inertial measurement unit,MEMS IMU)误差快速累积导致GNSS/惯性导航系统(inertial navigation system,INS)组合定位精度下降的问题,提出了一种GNSS载波相位实时动态差分(real time kinematic,RTK)+载波相位时间差分(time-differenced carrier phase,TDCP)/INS实时精密定位方法。在观测条件良好时,采用固定模糊度的RTK与INS紧组合;当信号严重遮挡RTK解算失败但TDCP解算成功时,使用TDCP观测值与INS紧组合;若TDCP解算失败,采用INS推算导航。在武汉大学校园及周边开展车载实验,结果表明,在除了隧道等密闭环境以外的城市道路上,多系统GNSS的TDCP解算成功率接近90%。在RTK解算失败的连续时间小于45 s的复杂环境下,TDCP/INS组合定位的平...  相似文献   

4.
高精度定位与导航服务在移动机器人、无人机与自动驾驶等新兴领域中发挥着至关重要的作用。视觉/惯性/激光雷达组合算法相较于视觉/惯性组合算法,可同时利用环境的空间结构与纹理信息以实现更为鲁棒的位姿估计结果,然而其在大尺度场景下仍存在误差累计问题。为此提出了一种全球导航卫星系统(global navigation satellite system,GNSS)精密单点定位(precise point positioning,PPP)/视觉/惯性/激光雷达紧组合算法。该算法首先通过4种传感器的联合初始化,实现了不同传感器空间基准的统一;然后,用双频无电离层组合后的GNSS伪距、相位观测值与视觉、惯性、激光雷达原始观测值共同构成误差因子;最后,通过基于关键帧与滑动窗口的因子图优化实现了全局位姿的精确、鲁棒估计。经车载实验验证,所提出的GNSS PPP/视觉/惯性/激光雷达紧组合算法通过4种传感器在原始观测值层面的组合,可以显著提升系统在复杂环境下的位姿估计的精度、连续性与可靠性,实现无缝导航。  相似文献   

5.
城市环境下BDS+GPS RTK+INS紧组合算法性能分析   总被引:3,自引:0,他引:3  
城市环境下运动载体接收的GNSS信号会被频繁地干扰和遮挡,GNSS RTK独立工作模式难以连续且可靠地固定模糊度以满足厘米级高精度定位需求。为此,本文设计了一套基于集中式卡尔曼滤波的BDS+GPS RTK紧组合算法,给出了其动力学模型、观测模型和算法架构流程。通过城市环境下的实际车载测试,对比分析了BDS、GPS、BDS+GPS 3种模式下RTK及RTK+INS紧组合的定位性能。试验结果表明,BDS+GPS双系统大大增加了可见卫星数,提高了城市环境下GNSS动态精密定位的可用性和精度;相对于GNSS RTK,紧组合极大地提高了精密定位的可靠性和可用性。  相似文献   

6.
手机GNSS芯片可支持多模GNSS观测信号,其提供的原始观测量为高精度导航定位提供了可能,智能手机高精度导航定位成为研究热点之一。本文首先基于自研的反向RTK算法,设计并开发了一套基于智能手机的实时高精度定位系统,降低手机的计算压力;然后基于智能手机小米8,进行了大范围(覆盖深圳、武汉、北京)、多场景(城市开阔/遮挡,高速开阔/遮挡)的动态车载应用测试,用于验证系统的可靠性和可用性。测试结果表明:系统在各场景下均能稳定有效运行,在开阔环境下,小米8可实现亚米级的实时动态定位精度,精度最优可达0.21 m。  相似文献   

7.
在 GNSS / INS车载组合导航系统中,GNSS信号易受遮挡或干扰而失锁,造成组合导航精度有所降低.针对这种情况,将虚拟卫星法应用于 GNSS / INS组合导航系统中.通过增加虚拟卫星,构造虚拟观测量,将实测观测量、虚拟观测量用于组合导航 Kalman滤波器解算.试验结果表明,此方法能够有效地提高系统的可观测性和导航精度.  相似文献   

8.
针对车载全球导航卫星系统/惯性导航系统(global navigation satellite system/inertial navigation system,GNSS/INS)组合导航中卫星信号中断,惯性导航系统单独导航误差积累较大的问题,提出了附加载体运动条件约束的卡尔曼(Kalman)滤波解算方法。通过利用载体固有的运动约束,包括近似高程约束、近似速度约束和近似姿态约束,减少载体自由度和模型参数;通过引入新的观测类型,增加观测冗余,可以加强Kalman滤波解,提高在GNSS信号中断时组合导航系统的定位精度,实现无缝导航。  相似文献   

9.
深组合导航系统将导航参数估计与GNSS卫星信号跟踪融合在一起,将相关器的输出I/Q信息作为GNSS/INS组合导航kalman滤波器的观测量,提高系统的导航精度、抗干扰性和动态性能。利用GNSS软件接收机方便处理基带信号的优势进行深组合导航算法研究,推导了深组合kalman滤波器的观测方程。仿真结果表明:在高动态条件下,深组合导航系统的导航精度明显优于紧组合导航系统的导航精度,位置误差稳定在2m范围内,速度误差稳定在0.04m/s内。  相似文献   

10.
通过将卫星定位和计算机视觉定位组合,可以使智能手机在城市、峡谷等卫星定位结果跳变或中断的情况下,仍为用户提供连续、高精度的位置服务.因此,为改善手机端卫星信号不理想区域的定位精度,设计和实现了GNSS与单目相机组合导航的实验.通过数据平滑、旋转矩阵求解等过程完成系统间的轨迹转换,并分析了坐标转换误差.使用结合贝叶斯估计的卡尔曼滤波对两种轨迹进行融合处理.最终结果表明,在城市环境下,GNSS与单目相机组合后,定位误差小于3 m的概率由21.21%提升至48.15%,小于5 m的概率由48.82%提升至70.03%.  相似文献   

11.
在地面车载组合导航中,全球导航卫星系统(global navigation satellite system,GNSS)的观测值容易受地面复杂环境的干扰,导致其定位结果出现异常,严重影响GNSS/捷联惯性导航系统(strap-down inertial navigation system,SINS)组合的滤波解算。从惯导系统误差特性的角度,研究了一种基于加表零偏稳定性的组合导航异常探测新方法。该方法从加表零偏解算的异常来发现GNSS位置、速度等观测值中的粗差,并采取剔除和降权的抗差方法抵御粗差影响。通过一组车载数据的分析表明,观测粗差对加表零偏解算的影响十分显著,以此为判别条件能够准确地发现观测粗差。采用该方法后,位置误差、速度误差和姿态误差的均方根分别减小了70.8%、87.9%和77.7%,显著提高了组合导航的解算精度和鲁棒性,为组合导航数据的抗差处理提供了一种新思路。  相似文献   

12.
设计了一套基于集中式卡尔曼滤波的实时动态定位(real-time kinematic,RTK)/惯性导航系统(inertial navigation system,INS)紧组合算法,通过实测车载数据对比分析了3颗可用卫星时的固定解和浮点解在位置漂移误差水平和模糊度恢复时间上的差异,验证了该算法在卫星较少情况下的良好性能。该算法在即使观测卫星不足4颗时使用固定解或浮点解进行滤波更新,提高了组合导航在复杂环境下的位置精度,并加快了模糊度恢复过程。实验结果表明,使用中等精度的惯导,在可见卫星数为3颗时,失锁30 s时的水平位置漂移误差为0.3 m;失锁60 s内,平均1~2 s就能可靠地恢复整周模糊度。在位置漂移误差与模糊度恢复方面,固定解和浮点解在GNSS信号短期部分失锁时的差异并不显著,但同时都明显优于信号完全失锁情形。  相似文献   

13.
精密定位的质量控制和完好性评估是实时全球卫星导航系统(GNSS)导航应用不可或缺的环节,尤其是在GNSS易受损害的城市峡谷等场景下,这种需求更加迫切.广域精密单点定位(PPP)瞬时分米级定位,利用GNSS三频信号形成的两个宽巷观测值可以实现单点单历元分米级定位.然而,在城市复杂环境中,反射信号、严重多路径以及其他信号干扰对定位造成的影响无法准确评估与识别,限制了PPP瞬时分米级单点定位的应用.完好性概念中的高级接收机自主完好性监测(ARAIM)可以计算用户定位误差最小置信区间的上限保护水平(PL)以评估定位有效性,可经过一定改进用于PPP瞬时定位的质量控制.针对当前ARAIM中计算PL的误差模型难以适应高精度定位需求的问题,提出了一种改进的ARAIM PL算法,称其为BARAIM(Back Advanced Receiver Autonomous Integrity Monitoring).使用PPP三频组合观测值残差对ARAIM权与误差模型进行修正以计算PL.基于不同复杂程度的环境下采集的车载数据对算法进行了验证,对PL的改进情况以及导航的可用性提升情况进行评估.结果表明:在不同环境下,基于改进的B-ARAIM算法得到的PL,相比传统方法得到的PL更符合城市定位的需要,将PL降低了30%~70%.此方法有助于将ARAIM算法应用在高精度GNSS定位领域.  相似文献   

14.
针对GNSS接收机在室内环境中面临的强烈的信号衰减、非视距传播和互相关效应的问题,提出了一种基于粗时段导航和RAIM算法解决A-GNSS室内定位问题的方法,并利用BDS数据验证了该方法的可靠性。结果表明,粗时段导航算法能够提供连续可靠的定位结果,应用于微弱信号环境;基于组合FDE的RAIM算法能够增加定位结果可用率,解决室内卫星信号存在的非视距传播和互相关效应的问题。基于粗时段导航与RAIM算法的A-GNSS定位技术能够应用于室内定位,仿真定位结果水平方向RMS在10 m以内。  相似文献   

15.
讨论了全球导航卫星系统(global navigation satellite system,GNSS)/里程计(odometer,ODO)/惯性导航系统(inertial navigation system,INS)组合定位定姿中误差校正与ODO/INS组合导航两个方面的问题。针对里程计刻度因子和安装误差角的校正,在不改变原GNSS/INS滤波器的基础上,设计了GNSS/INS与INS/ODO两级卡尔曼滤波器级联结构,将INS导航误差与里程计刻度因子误差、安装误差角分别列入两个滤波器的系统状态中,在GNSS连续观测和固定模糊度条件下,利用里程计和惯导里程增量之差作为INS/ODO卡尔曼滤波器的外部观测,对误差进行校正。另一方面,使用校正过的里程计和安装误差角,在GNSS失锁条件下对INS进行观测和修正。跑车实验结果表明,本文算法可以有效校正里程计刻度因子和定位定姿(positioning and orientaton system,POS)安装误差角,同时大幅提高GNSS失锁条件下的定位精度,配合平滑卡尔曼滤波器,可将城市移动测量两分钟GNSS失锁条件下的定位误差控制在0.5m以内。  相似文献   

16.
基于抗差EKF的GNSS/INS紧组合算法研究   总被引:2,自引:0,他引:2  
提出了GNSS/INS紧组合导航的抗差EKF算法,采用21状态GNSS/INS紧组合状态方程,根据多余观测分量及预测残差统计构造抗差等价增益矩阵,建立抗差EKF算法,通过迭代给出GNSS/INS组合导航的抗差解,并开发GNSS/INS紧组合导航模拟平台,通过对观测值加入单粗差、多粗差及缓慢增长三类误差,测试本文算法对不同粗差的抑制能力。分析表明,抗差EKF可以将三类粗差抑制在相应观测值的残差中,达到削弱其对状态参数估计的影响。本文算例证明,抗差EKF算法可将导航解的误差精度从dm级提高为cm级甚至mm级,导航精度及可靠性得到明显提高。  相似文献   

17.
针对5G定位和捷联惯性导航单一定位方式的可靠性和定位精度较差的问题,本文以扩展卡尔曼滤波为基础,提出了融合5G信号到达时间和信号离开角的5G/SINS紧组合导航算法。该算法首先利用惯性传感器输出信息解算用户的位置、速度和姿态,在此基础上利用已知的基站坐标反算出一组虚拟的5G观测值,然后使用该观测值和实际的5G测量值建立统一的观测方程进行滤波解算。仿真试验结果表明,5G/SINS紧组合的定位成功率可达99%以上,且能够有效改善惯导航位推算的发散问题,其定位精度相比单纯的5G定位有了大幅提高,相比5G/SINS松组合受基站数量和基站几何分布的影响较小。融合TOA/AOD的5G/SINS紧组合导航的定位结果有超过99%的历元在3 m以内。在5G观测值中存在系统误差时,5G/SINS紧组合的定位表现优于5G定位和5G/SINS松组合导航。  相似文献   

18.
针对动态环境下GNSS/INS导航定位结果常受粗差影响的问题,提出了一种基于抗差卡尔曼滤波的GPS/BDS双系统RTK/INS紧组合导航定位算法,根据方差膨胀模型,建立抗差卡尔曼算法,得到GNSS/INS紧组合抗差解,并通过两个不同区域的实测车载实验进行了算法验证. 实验结果表明:本方法相较于传统方法,在N、E、D三个方向的导航精度分别提高1.4~4.6 cm,0.7~9 cm,1.5~2 cm,模糊度固定成功率提高10.3%~25.6%,导航精度及可靠性得到显著提高,对动态环境下车载或自动驾驶等应用具有一定的理论参考和实用价值.   相似文献   

19.
北斗/全球导航卫星系统(global navigation satellite system,GNSS)在开阔环境下可以提供连续可靠的高精度导航定位服务,但是在城市复杂场景下,GNSS多路径与非视距信号严重、粗差与周跳发生频繁,导航定位能力仍然存在不足。相较于扩展卡尔曼滤波(extended Kalman filter, EKF)方法,因子图优化能够充分利用历史观测,通过窗口内历元间约束与冗余观测信息共同抑制异常数据影响。构建了基于滑动窗口因子图优化的GNSS定位模型,通过验后残差迭代分析进行粗差探测,并从最小可探测误差、粗差探测成功率、定位精度提升等方面深入分析因子图优化与EKF的抗差性能。以城市复杂场景数据进行处理验证,结果表明,因子图优化的最小可探测误差减小了11.92%~32.56%,粗差探测成功率提升了3.84%~10.47%,GNSS定位精度提升了11.29%~25.99%。总体而言,对于城市复杂场景下的GNSS导航定位应用,因子图优化具备更好的抗差性能和定位精度,有望取代现有基于单历元观测值的EKF模型。  相似文献   

20.
目前常用相位或多普勒观测值平滑伪距的方式提高全球导航卫星系统(global navigation satellite system, GNSS)的导航性能。然而在城市环境下,GNSS观测信号中断严重,且行人等载体运动具有很大随机性,常规的相位平滑伪距或者常速度/常加速度导航算法效果有限。因此,提出了一种基于历元间载体位置变化量约束的单机GNSS导航算法,该算法利用历元间相位差分观测值计算高精度历元间位置变化量,并以此描述载体的运动,构建滤波模型的状态方程,同时利用伪距观测值构建观测方程,采用扩展卡尔曼滤波实时估计载体的位置。实验使用低成本的单频u-blox接收机实测数据,结合该算法进行导航解算。结果表明,静态情况下,导航结果的平面精度优于0.56 m;在动态情况下,平面精度优于1.0 m。在使用基站播发的GNSS差分改正数后,导航平面精度、垂向精度分别提高约49%、46%。该算法性能可靠,即使前后历元仅有4颗卫星连续观测,仍能够提供连续、平滑的实时定位结果,为用户提供更优的导航体验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号