首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A raster and vector GIS was created for the North Appalachian Experimental Watershed (NAEW) from legacy (1960) 1:2,400‐scale contour maps. The intent of the study was to use terrain data for the spatial modeling of soil organic carbon. It was hypothesized that DEMs derived from these data would be more accurate and therefore more useful for terrain‐based soil modeling than those from USGS 1:24,000‐scale contour data. Central tasks for this study were to digitally capture the 1:2,400‐scale maps, convert digital contour data sources to raster DEMs at multiple resolutions, and derive terrain attributes. A flexible approach was adopted, using software outside of mainstream GIS sources where scientifically or practically advantageous. Elevation contours and streamlines were converted to raster DEMs using ANUDEM. DEMs ranging in resolution from 0.5–30 m were tested for accuracy against precision carrier‐phase GPS data. The residual standard deviation was 1.68 meters for the USGS DEM and 0.36 meters for the NAEW DEM. The optimal horizontal resolution for the NAEW DEM was 5 m and for the USGS 10 m. Five and 10 m resolution DEMs from both data sources were tested for carbon prediction. Multiple terrain parameters were derived as proxies for surficial processes. Soil samples (n = 184) were collected on four zero‐order watersheds (conventional tillage, no‐till, hay and pasture). Multiple least squares regressions (m.l.s.) were used to predict mass C (kg m?2, 30 cm depth) from topographic information. Model residuals were not spatially autocorrelated. Statistically significant topographic parameters were attained most consistently from the 5 m NAEW DEM. However, topography was not a strong predictor of carbon for these watersheds, with r2 ranging from 0.23 to 0.58.  相似文献   

2.
Thar desert spreads in western part of Rajasthan, northern part of Gujarat, and some parts of Punjab and Haryana. The terrain is dominated by slightly sloping plains, broken by some dunes and low barren hills. The area is characterized by low average annual rainfall which is erratic in distribution and intensity. Drought will remain a major hindrance for agricultural production in Thar desert. Due to water stress condition, many watershed based development activities has been adopted by government and non-government organizations for the growth and sustainable development of this region. The need of this hour is preparation of a national level watershed atlas of 1:50,000 scale because majority of thematic maps are being produced presently on same or 1:10,000 scale. The manual delineation of watershed boundary in flat terrain based on topographic map will be time consuming and less accurate in the absence of prominent contour lines. Automated approach for watershed delineation using Digital Elevation Model (DEM) along a suitable algorithm has the advantage because the output is not only less time consuming but also independent from human decisions. Hence, a case study has been carried out in Churu sub-basin part of Indus basin which is located in Thar desert region. Depression less DEM with different spatial resolutions was used as input in hydrology tool of ArcGIS spatial analyst function for characterization of watersheds. The Churu sub-basin has been divided into various numbers of watersheds with an average size of 600 km2. These watershed boundaries have been validated with respect to high resolution satellite imageries (IRS P6 LISS IV), Survey of India toposheets, ancillary data and limited field checks.  相似文献   

3.
Soil maps have been prepared hitherto by conventional ground surveys and by using aerial photographs. In this paper, the use of LANDSAT data for preparation of small scale soil maps upto association of sub-group level has been discussed. Typical spectral curves for various soils and landuse categories were given based on the mean spectral levels for each LANDSAT band obtained from Multispectral Data Analysis System (M-DAS). Soil characterization using the multispectral data could be done by both image oriented and numerically oriented approaches. The small scale soil maps thus prepared by using the satellite data could be used for regional planning and as map base for further detailed surveys.  相似文献   

4.
In order to check the premature siltation of the reservoirs, the Government of India has launched the schemes of soil conservation and integrated watershed management in the catchments of River Valley Projects (RVPs) and Flood Prone Rivers. However, due to lack of sufficient funds and manpower for surveys and soil and water conservation programmes, a priority approach for treatment of the watersheds was developed and followed for implementation of soil conservation and watershed management schemes in India.

This paper deals with the prioritisation of watersheds using GIS approach in a part of Musi river catchment in RR district of Andhra Pradesh. The GIS software package, ARC/INFO version 5.0, was used to digitize, edit, display, analyse and plot the maps. It was concluded that by the creation of computerised data base for the maps, the composite map generation and calculation of area statistics are performed much faster and more accurately compared to the conventional method.  相似文献   

5.
The problem of surveying watersheds for strategic planning in the Himalayan terrain has attracted the attention of the land surveyors recently. A small watershed in Surgad Catchment has been surveyed to select various parameters that determine soil loss, which can be studied using aerial photo-interpretation technique with a view to watershed management. Soil, slope, landuse and micro climatic factors have been used to delineate different morphogenetic categories. The result shows that on steeper slopes, well developed soils are found which indicates a high tolerance limits of these soils. In Himalayan terrain soils and vegetation are therefore, better indices of sediment losses than slopes. Small scale aerial photographs can be successfully used to judge the tolerance limits of soils in Himalayan terrain.  相似文献   

6.
7.
Evaluation and mapping of spatial variations of land productivity is very important for effective landuse planning. The present study was undertaken in watershed of the Song river (Dehra Dun district, U.P.), for assessing and mapping land productivity using modified Storie Index following integrated approach. This approach utilizes soilscape information (derived from digital IRS-IA LISS-II data), soil characteristics (field observed and laboratory analysed) and terrain slope information (obtained from Survey of India topographical maps). The approach consists of preparation of Storie Index productivity rating factors such as: A (soil profile character), B (soil texture), X (soil physical and fertility conditions), and C (land slope), and computerised integration of these maps to generate land productivity map. The results indicate that in the watershed 30.6%, 19.6%, 12.2%, 11.8% and 18.8% areas have been found to be under good, fair, poor, very poor and not suitable, land productivity classes, respectively.  相似文献   

8.
The demand for precise mapping and monitoring of forest resources, such as above ground biomass (AGB), has increased rapidly. National accounting and monitoring of AGB requires regularly updated information based on consistent methods. While remote sensing technologies such as airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) have been shown to deliver the necessary 3D spatial data for AGB mapping, the capacity of repeat acquisition, remotely sensed, vegetation structure data for AGB monitoring has received less attention. Here, we use vegetation height models (VHMs) derived from repeat acquisition DAP data (with ALS terrain correction) to map and monitor woody AGB dynamics across Switzerland over 35 years (1983-2017 inclusive), using a linear least-squares regression approach. We demonstrate a consistent relationship between canopy height derived from DAP and field-based NFI measures of woody AGB across four inventory periods. Over the environmentally heterogeneous area of Switzerland, our models have a comparable predictive performance (R2 = 0.54) to previous work predicting AGB based on ALS metrics. Pearson correlation coefficients between measured and predicted changes in woody AGB over time increased with shorter time gaps (< 2 years) between image capture and field-based measurements, ranging between 0.76 and 0.34. A close temporal match between field surveys and remote sensing data acquisition is thus key to reliable mapping and monitoring of AGB dynamics, especially in areas where forest management and natural disturbances trigger relatively fast canopy dynamics. We show that VHMs derived from repeat DAP capture constitute a cost effective and reliable approach to map and monitor changes in woody AGB at a national extent and can provide an important information source for national carbon accounting and monitoring of ecosystem service provisioning.  相似文献   

9.
Monitoring of temporal and spatial soil moisture variability is an important issue, both from practical and scientific point of view. It is well known that passive, L-band, radiometric measurements provide best soil moisture estimates. Unfortunately as it was observed during Soil Moisture and Ocean Salinity (SMOS) mission, which was specially dedicated to measure soil moisture, these measurements suffer significant data loss. It is caused mainly by radio frequency interference (RFI) which strongly contaminates Central Europe and even in particularly unfavorable conditions, might prevent these data from being used for regional or watershed scale analysis. Nevertheless, it is highly awaited by researchers to receive statistically significant information on soil moisture over the area of a big watershed. One of such watersheds, the Odra (Oder) river watershed, lies in three European countries – Poland, Germany and the Czech Republic. The area of the Odra river watershed is equal to 118,861 km2 making it the second most important river in Poland as well as one of the most significant one in Central Europe.This paper examines the SMOS soil moisture data in the Odra river watershed in the period from 2010 to 2012. This attempt was made to check the possibility of assessing, from the low spatial resolution observations of SMOS, useful information that could be exploited for practical aims in watershed scale, for example, in water storage models even while moderate RFI takes place. Such studies, performed over the area of a large watershed, were recommended by researchers in order to obtain statistically significant results. To meet these expectations, Centre Aval de Traitement des Donnes SMOS (CATDS), 3-days averaged data, together with Global Land Data Assimilation System (GLDAS) National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab (NOAH) model 0.25 soil moisture values were used for statistical analyses and mutual comparisons.The results obtained using various statistical tools unveil high scientific potential of CATDS SMOS data to study soil moisture over the Odra river watershed. This was also confirmed by reasonable agreement between results derived from CATDS SMOS Ascending and GLDAS data sets. This agreement was achieved mainly by using these data spatially averaged over the whole watershed area, and for observations performed in the period longer than three-day averaging time. Comparisons of separate three-day data in a given pixel position, or at smaller areas would be difficult because of data gaps. Hence, the results of the work suggest that despite of RFI interferences, SMOS observations can provide effective input for analysis of soil moisture at regional scales. Moreover, it was shown that CATDS SMOS soil moisture data are better correlated with rainfall rate than GLDAS ones.  相似文献   

10.
Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities, and natural disasters. Forest fires, which are an integral part of Mediterranean ecosystems, are responsible for the destruction of above-and below-ground vegetation that protects against soil erosion. Under this perspective, the estimation of potential soil erosion, especially after fire events, is critical for identifying watersheds that require management to prevent sediment loss, flooding, and increased ecosystem degradation. The objective of this study was to model the potential post-fire soil erosion risk following a large and intensive wildland fire, in order to prioritize protection and management actions at the watershed level in a Mediterranean landscape. Burn severity and preand post-fire land cover/uses were mapped using an ASTER image acquired two years before the fire, air photos acquired shortly after the fire, and a Landsat TM image acquired within one month after-fire. We estimated pre-and post-fire sediment loss using an integrated GIS-based approach, and additionally we analyzed landscape erosion patterns. The overall accuracy of the severity map reached 83%. Severe and heavy potential erosion classes covered approximately 90% of the total area following the fire, compared to 55% before. The fire had a profound effect on the spatial erosion pattern by altering the distribution of the potential erosion classes in 21 out of 24 watersheds, and seven watersheds were identified as being the most vulnerable to post-fire soil erosion. The spatial pattern of the erosion process is important because landscape cover heterogeneity induced especially by fire is a dominant factor controlling runoff generation and erosion rate, and should be considered in post-fire erosion risk assessment.  相似文献   

11.
人们很早就开始研究地形信息提取的技术,而传统的地形分析是基于二维平面地图进行的,从基于纸质地图到基于数字地图的地形分析,是地形分析手段和功能的一次重大突破。随着科学的发展,三维虚拟现实环境中的地形分析,使分析结构以可视化的状态更准确、更立体地表现出来,这又成为GIS历史上一个质的飞跃。地形信息的提取与分析,在水文学、地貌土壤学、生态学、工程学等领域都是有广泛应用的,所以,地形因子的提取成为本课题的重要研究方向。  相似文献   

12.
基于多尺度特征融合和支持向量机的高分辨率遥感影像分类   总被引:10,自引:1,他引:10  
相对传统的中低分辨率遥感数据而言,高空间分辨率遥感影像同一地物内部丰富的细节得到表征,空间信息更加丰富,地物的尺寸、形状以及相邻地物的关系得到更好的反映,但其光谱统计特性不如中低分辨率影像稳定,类内光谱差异较大,而传统分类方法仅依据像元的光谱值,因此在高分辨率影像分类中,传统方法往往不能获得好的结果。在此背景下,提出了一种多尺度空间特征融合的分类方法,旨在利用不同尺度的空间邻域特征弥补传统方法的不足。其基本过程是:首先针对不同尺度特点,用小波变换压缩空间邻域特征,并结合支持向量机得到不同尺度下的分类结果,然后根据尺度选择因子为每个像元选择最佳的类别。文中QuickBird和IKONOS影像实验证明该算法能有效提高高分辨率影像解译的精度。  相似文献   

13.
The groundwater occurrence and movement within the flow systems are governed by many natural factors like topography, geology, geomorphology, lineament structures, soil, drainage network and land use land cover (LULC). Due to complex natural geological/hydro-geological regime a systematic planning is needed for groundwater exploitation. It is even more important to characterize the aquifer system and delineate groundwater potential zones in different geological terrain. The study employed integration of weighted index overlay analysis (WIOA) and geographical information system (GIS) techniques to assess the groundwater potential zones in Krishna river basin, India and the validation of the result with existing groundwater levels. Different thematic layers such as geology, geomorphology, soil, slope, LULC, drainage density, lineament density and annual rainfall distribution were integrated with WIOA using spatial analyst tools in Arc-GIS 10.1. These thematic layers were prepared using Geological survey of India maps, European Digital Archive of Soil Maps, Bhuvan (Indian-Geo platform of ISRO, NRSC) and 30 m global land cover data. Drainage, watershed delineation and slope were prepared from the Shuttle Radar Topography Mission digital elevation model of 30 m resolution data. WIOA is being carried out for deriving the normalized score for the suitability classification. Weight factor is assigned for every thematic layer and their individual feature classes considering their significant importance in groundwater occurrence. The final map of the study area is categorized into five classes very good, good, moderate, poor and very poor groundwater potential zones. The result describes the groundwater potential zones at regional scale which are in good agreement with observed ground water condition at field level. Thus, the results derived can be very much useful in planning and management of groundwater resources in a regional scale.  相似文献   

14.
Alaunja watershed, located on ‘Chotanagpur’ plateau of Bihar, is mainly under single cropping. The area receives more than 1000 mm of rainfall but it has not been utilised properly to increase the agricultural output. The remote sensing, geophysical, DBTM (Digital Basement Terrain Model) and GIS (Geographic information System) techniques were used for providing scientific database for sustainable utilisation of water resources in watershed perspective. The landuse, soil and surface water body maps have been prepared using remotely sensed data. DBTM has been generated based on depth of basement information derived from geophysical data to provide information regarding aquifer geometry, fracture zones and sub-surface basins. Analysis indicated that surface and groundwater resources have potential to irrigate 53 per cent of geographical area of the watershed. But at present, this available potential has been utilised only to irrigate 7.03 per cent area of the watershed. Feasibility for large scale development of groundwater through dugwell is possible only in 2 per cent area of the watershed. The available groundwater potential to irrigate 28 per cent area of watershed can not be utilised through dugwells. The surface water potential is also poorly utilised. The present study also helped in prioritising the water resource development activities.  相似文献   

15.
热红外地表温度遥感反演方法研究进展   总被引:6,自引:0,他引:6  
地表温度是表征地表过程变化的一个非常重要的特征物理量,是地表—大气能量交换的直接驱动因子,广泛地用于地表能量平衡、气候变化和资源环境监测等研究领域。本文系统地评述了热红外地表温度遥感反演方法,包括单通道算法、多通道算法、多角度算法、多时相算法和高光谱反演算法。回顾了地表温度反演的基础理论和方法;并在此基础上,进一步综述了地表温度遥感反演的验证方法,以及地表温度的时间和角度归一化方法;最后对未来提高地表温度反演精度的研究方向提出了建议。  相似文献   

16.
Choice of watershed delineation technique is an important source of uncertainty for cryo-hydrologic studies of the Greenland Ice Sheet (GrIS), with different methods yielding different watersheds for a common pour point. First, this paper explores this uncertainty for the Akuliarusiarsuup Kuua River Northern Tributary, Western Greenland. Next, a standardized, semi-automated modeling framework for generating land-ice watersheds for GrIS land-terminating ice (henceforth referred to as CryoSheds) using geographic information systems (GIS) hydrologic modeling tools is presented. The framework uses ArcGIS and the ArcPy geoprocessing library to delineate two types of land-ice watersheds, namely those defined by: (1) a hydraulic pressure potential with varying water to ice overburden pressure ratios (k-value), which determines theoretical flow paths from the hydrostatic equation, using surface and bedrock digital elevation models (DEMs) and (2) a surface topography DEM alone. Lastly, a demonstration of the CryoSheds method is presented for seven remotely sensed proglacial pour points along the Aussivigssuit River (AR), Western Greenland, and its largest tributaries. GrIS meltwater runoff from these seven nested land-ice watersheds is estimated using Modele Atmospherique Regional (MAR) v.3.2 and runoff uncertainties due to watershed delineation parameter selection is estimated.  相似文献   

17.
The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed “hotspots” of high erosion of up to 16 t ha−1 a−1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.  相似文献   

18.
Flagrant soil erosion in Morocco is an alarming sign of soil degradation. Due to the considerable costs of detailed ground surveys of this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. In this paper, we characterize the state of land degradation in a small Mediterranean watershed using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and ground-based spectroradiometric measurements. The two visible, the near-infrared and six shortwave infrared bands of the above sensor were calibrated using ground measurements of the spectral reflectance. Field measurements were carried out in the Saboun experimental basin located in the marl soil region of the Moroccan western Rif. The study leads to the development and evaluation of a new spectral approach to express land degradation. This index called Land degradation index (LDI) is based on the concept of the soil line derived from spectroradiometric ground measurements. In this study, we compare LDI and the spectral angle mapping (SAM) approaches to assess and map land degradation. Results show that LDI provides more accurate results for mapping land degradation (Kappa = 0.79) when compared to the SAM method (Kappa = 0.61). Validation and evaluation of the results are based on the thematic maps derived from the ground data (organic matter, clay, silt and sand) by kriging, DEM, slope gradient and photointerpretation.  相似文献   

19.
This paper examines the effects of watershed complexity in terms of physiography and land use on the specific sediment yield of the Chardavol watershed (1012.946 km2) in Iran. First, specific sediment yield was simulated using spatially distributed hydrological WetSpa model, then the influential factors such as morphometric variables, land-use composition and pattern and soil properties of the watershed were calculated at the sub-watershed scale. Due to the inter-reliant of these watershed characteristics, a partial least squares regression (PLSR) was used to illustrate the relationship between the specific sediment yield and data of 15 selected watershed characteristics. The results showed that the land-use composition and soil properties had the maximum effects on the specific sediment yield and clarified 79% of the variation in the specific sediment yield. Regarding the availability of digital spatial database over the watershed, this simple PLSR procedure could be applied in different watersheds.  相似文献   

20.
The present paper offers an innovative method to monitor the change in soil erosion potential by integrating terrain and vegetation indices derived from remote sensing data. Three terrain indices namely, topographic wetness index (TWI), stream power index (SPI) and slope length factor (LS), were derived from the digital elevation model. Normalized vegetation index (NDVI) was derived for the year 1988 and 2004 using remote sensing images. K-mean clustering was performed on staked indices to categorize the study area into four soil erosion potential classes. The validation of derived erosion potential map using USLE model showed a good agreement. Results indicated that there was a significant change in the erosion potential of the watershed and a gradual shifting of lower erosion potential class to next higher erosion potential class over the study period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号