首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of reforestation on carbon(C) sequestration in China′s Loess Plateau ecosystem have attracted much research attention in recent years. Black locust trees(Robinia pseudoacacia L.) are valued for their important use in reforestation and water and soil conservation efforts. This forest type is widespread across the Loess Plateau, and must be an essential component of any planning for C sequestration efforts in this fragile ecological region. The long-term effects of stand age on C accumulation and allocation after reforestation remains uncertain. We examined an age-sequence of black locust forest(5, 9, 20, 30, 38, and 56 yr since planting) on the Loess Plateau to evaluate C accumulation and allocation in plants(trees, shrubs, herbages, and leaf litter) and soil(0–100 cm). Allometric equations were developed for estimating the biomass of tree components(leaf, branch, stem without bark, bark and root) with a destructive sampling method. Our results demonstrated that black locust forest ecosystem accumulated C constantly, from 31.42 Mg C/ ha(1 Mg = 10~6 g) at 5 yr to 79.44 Mg C/ha at 38 yr. At the ′old forest′ stage(38 to 56 yr), the amount of C in plant biomass significantly decreased(from 45.32 to 34.52 Mg C/ha) due to the high mortality of trees. However, old forest was able to accumulate C continuously in soil(from 33.66 to 41.00 Mg C/ha). The C in shrub biomass increased with stand age, while the C stock in the herbage layer and leaf litter was age-independent. Reforestation resulted in C re-allocation in the forest soil. The topsoil(0–20 cm) C stock increased constantly with stand age. However, C storage in sub-top soil, in the 20–30, 30–50, 50–100, and 20–100 cm layers, was age-independent. These results suggest that succession, as a temporal factor, plays a key role in C accumulation and re-allocation in black locust forests and also in regional C dynamics in vegetation.  相似文献   

2.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

3.
Land use change is one of the major factors that affect soil organic carbon(SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar(Populus tomentosa) and korshinsk peashrub(Caragana korshinskii) in three climate regions(Chifeng City, Fengning City and Datong City of the ′Beijing-Tianjin Sandstorm Source Control′(BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0–100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%–111% and 15%–59% for P. tomentosa and 9%–63% and 0–73% for C. korshinskii in the 0–20 cm and 20–100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.  相似文献   

4.
Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L.(alfalfa) grassland biomass carbon and soil organic carbon density(SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period(viz. 0–10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0–10 year. During 0–30 year, the SOCD from 0–100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62 ± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for 10 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general.  相似文献   

5.
Soil respiration is a key component of the global carbon cycle, and even small changes in soil respiration rates could result in significant changes in atmospheric CO2 levels. The conversion of tropical forests to rubber plantations in SE Asia is increasingly common, and there is a need to understand the impacts of this land-use change on soil respiration in order to revise CO2 budget calculations. This study focused on the spatial variability of soil respiration along a slope in a natural tropical rainforest and a terraced rubber plantation in Xishuangbanna, Southwest (SW) China. In each land-use type, we inserted 105 collars for soil respiration measurements. Research was conducted over one year in Xishuangbanna during May, June, July and October 2015 (wet season) and January and March 2016 (dry season). The mean annual soil respiration rate was 30% higher in natural forest than in rubber plantation and mean fluxes in the wet and dry season were 15.1 and 9.5 Mg C ha-1 yr-1 in natural forest and 11.7 and 5.7 Mg C ha-1 yr-1 in rubber plantation. Using a linear mixed effects model to assess the effect of changes in soil temperature and moisture on soil respiration, we found that soil temperature was the main driver of variation in soil respiration, explaining 48% of its seasonal variation in rubber plantation and 30% in natural forest. After including soil moisture, the model explained 70% of the variation in soil respiration in natural forest and 76% in rubber plantation. In the natural forest slope position had a significant effect on soil respiration, and soil temperature and soil moisture gradients only partly explained this correlation. In contrast, soil respiration in rubber plantation was not affected by slope position, which may be due to the terrace structure that resulted in more homogeneous environmental conditions along the slope. Further research is needed to determine whether or not these findings hold true at a landscape level.  相似文献   

6.
Soil respiration (SR) Wis one of the largest contributors of terrestrial CO_2 to the atmosphere.Environmental as well as physicochemical parameters influence SR and thus, different land use practices impact the emissions of soil CO_2. In this study, we measured SR, bi-monthly, over a one-year period in a terrace tea plantation, a forest tea plantation and a secondary forest, in a subtropical mountain area in Xishuangbanna, China. Along with the measurement of SR rates, soil characteristics for each of the land use systems were investigated. Soil respiration rates in the different land use systems did not differ significantly during the dry season, ranging from2.7±0.2 μmol m~(-2) s~(-1) to 2.8±0.2 μmol m~(-2) s~(-1). During the wet season, however, SR rates were significantly larger in the terrace tea plantation(5.4±0.5 μmol m~(-2)s~(-1)) and secondary forest(4.9±0.4 μmol m~(-2)s~(-1)) than in the forest tea plantation(3.7±0.2 μmol m~(-2) s~(-1)).This resulted in significantly larger annual soil CO_2 emissions from the terrace tea and secondary forest,than from the forest tea plantation. It is likely that these differences in the SR rates are due to the 0.5times lower soil organic carbon concentrations in thetop mineral soil in the forest tea plantation, compared to the terrace tea plantation and secondary forest.Furthermore, we suggest that the lower sensitivity to temperature variation in the forest tea soil is a result of the lower soil organic carbon concentrations. The higher SR rates in the terrace tea plantation were partly due to weeding events, which caused CO_2 emission peaks that contributed almost 10% to the annual CO_2 flux. Our findings suggest that moving away from heavily managed tea plantations towards low-input forest tea can reduce the soil CO_2 emissions from these systems. However, our study is a casestudy and further investigations and upscaling are necessary to show if these findings hold true at a landscape level.  相似文献   

7.
The Beijing-Tianjin Sand Source Control Project(BTSSCP), a national ecological restoration project, was launched to construct an ecological protection system in the Beijing-Tianjin sand source areas to reduce dust hazards. The carbon sequestration dynamics can be used to assess the ecological effects of an ecological restoration project. Here, we conducted vegetation and soil study to assess the carbon sequestration in the plantations with 10 years old stands in Beijing-Tianjin sand source areas. The results at the site scales indicated that the average net increase of plantation ecosystem carbon stock was 33.8 Mg C ha~(-1), with an annual increase rate of 3.38 Mg C ha~(-1) yr~(-1). The average net increase of carbon varied among regions, vegetation types, and forest management activities. Soil bulk density in the top soil decreased slightly after 10-year implementation of the project. Coniferous forests and shrubs are suitable plant species for sand source areas.Natural restoration in the plantations is a practical and feasible and promising approach for enhancing ecosystem carbon sequestration potential.  相似文献   

8.
In karst regions,the spatial heterogeneity of soil mineral oxides and environmental variables is still not clear.We investigated the spatial heterogeneity of SiO2,Al2O3,Fe2O3,CaO,MgO,P2O5,K2O,and MnO contents in the soils of slope land,plantation forest,secondary forest,and primary forest,as well as their relationships with environmental variables in a karst region of Southwest China.Geostatistics,principal component analysis(PCA),and canonical correlation analysis(CCA)were applied to analyze the field data.The results show that SiO2was the predominant mineral in the soils(45.02%–67.33%),followed by Al2O3and Fe2O3.Most soil mineral oxide components had a strong spatial dependence,except for CaO,MgO,and P2O5in the plantation forest,MgO and P2O5in the secondary forest,and CaO in the slope land.Dimensionality reduction in PCA was not appropriate due to the strong spatial heterogeneity in the ecosystems.Soil mineral oxide components,the main factors in all ecosystems,had greater influences on vegetation than those of conventional soil properties.There were close relationships between soil mineral oxide components and vegetation,topography,and conventional soil properties.Mineral oxide components affected species diversity,organic matter and nitrogen levels.  相似文献   

9.
Carbon sequestration in forest vegetation of Beijing at sublot level   总被引:1,自引:1,他引:0  
Based on forest inventory data (FID) at sublot level,we estimated the carbon sequestration in forest vegetation of Beijing,China in 2009.In this study,the carbon sequestration in forest vegetation at sublot level was calculated based on net biomass production (ΔB) which was estimated with biomass of each sublot and function relationships between ΔB and biomass.The biomass of forested land was calculated with biomass expansion factors (BEFs) method,while those of shrub land and other forest land types were estimated with biomass,coverage and height of referred shrubs and shrub coverage and height of each sublot.As one of special forested land types,the biomass of economic tree land was calculated with biomass per tree and tree number.The variation of carbon sequestration in forest vegetation with altitude,species and stand age was also investigated in this study.The results indicate that the carbon sequestration in forest vegetation in Beijing is 4.12 × 106 tC/yr,with the average rate of 3.94 tC/(ha·yr).About 56.91% of the total carbon sequestration in forest vegetation is supported by the forest in the plain with an altitude of < 60 m and the low mountainous areas with an altitude from 400 m to 800 m.The carbon sequestration rate in forest vegetation is the highest in the plain area with an altitude of < 60 m and decreased significantly in the transitional area from the low plain to the low mountainous area with an altitude ranging from 200 m to 400 m due to intensive human disturbance.The carbon sequestration of Populus spp.forest and Quercus spp.forest are relatively higher than those of other plant species,accounting for 25.33% of the total.The carbon sequestration in vegetation by the forest of < 40 years amounts to 45.38% of the total.The carbon sequestration rate in forest vegetation peaks at the stand age of 30–40 years.Therefore,it would be crucial for enhancing the capability of carbon sequestration in forest vegetation to protect the forest in Beijing,to limit human disturbance in the transitional area from the plain to the low mountain area,and to foster the newly established open forest.  相似文献   

10.
Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO_2 emissions. However, experimental evidence for C sequestration potential(C_(sp)) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore C_(sp). The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the C_(sp) of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher C_(sp) may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO2 emissions. However, experimental evidence for C sequestration potential(Csp) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore Csp. The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the Csp of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher Csp may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.  相似文献   

11.
By using field survey data from the sixth forest inventory of Jiangxi Province in 2003, the biomass and carbon storage for three studied species (Pinus massoniana, Cunninghamia lanceolata, and Pinus elliottii) were estimated in Taihe and Xingguo counties of Boyang Lake Basin, Jiangxi Province, China. The relationship between carbon density and forest age was analyzed by logistic equations. Spatio-temporal dynamics of forest biomass and carbon storage in 1985-2003 were also described. The results show that total stand area of the three forest species was 3.10 × 10^5 ha, total biomass 22.20 Tg, vegetation carbon storage 13.07 Tg C, and average carbon density 42.36 Mg C/ha in the study area in 2003. Carbon storage by forest type in descending order was: P. massoniana, C. lanceolata and P. elliottii. Carbon storage by forest age group in descending order was: middle stand, young stand, near-mature stand and mature stand. Carbon storage by plantation forests was 1.89 times higher than that by natural forests. Carbon density of the three species increased 8.58 Mg C/ha during the study period. The carbon density of Taihe County was higher in the east and west, and lower in the middle. The carbon density of Xingguo County was higher in the northeast and lower in the middle. In general, the carbon density increased with altitude and gradient. Afforestation projects contribute significantly to increasing stand area and carbon storage. Appropriate forest management may improve the carbon sequestration capacity of forest ecosystems.  相似文献   

12.
Soil microbial communities are primarily regulated by environmental temperature. Our study investigated the effects of global warming on soil microbial community composition as measured via phospholipid fatty acid (PLFA) analysis and soil chemical characteristics in relation to soil depth in a dragon spruce plantation and a spruce-fir-dominated natural forestin the Eastern Tibetan Plateau. Open-top chambers were utilized to increase the soil and air temperature. Soil samples were collected from the 0-10 cm, 10-20 cm, and 20-30 cm layers after a 4-year warming. Our results showed that the soil microbial community and the contents of TC (Total carbon), TN (Total nitrogen), NO 3 - , and NH 4 + responded differently to warming in the two contrasting forests, especially at the 0-10 cm soil depth. Warming increased soil microbial biomass at the 0-20 cm depth of soil in natural forest but reduced it at the 0-10 cm depth ofsoil in the plantation. In contrast, the TC and TN contents were reduced in most soil layers of a natural forest but increased in all of the soil layers of the plantation under warming conditions. This result suggested that the effects of warming on soil microbial community and soil C and N pools would differ according to soil depth and forest types; thus, the two contrasting forests would under go differing changes following the future climate warming in this region.  相似文献   

13.
本文以贵州省东南部三州为研究区,运用连续生物量转换因子法和平均生物量法,通过2010年森林清查小班数据,建立了24类优势树种的森林植被碳密度与林龄之间的关系。同时,估算了1990-2010年间贵州省东南部森林植被生物量及其碳蓄积量,分析了碳蓄积量的时空变化特征,并预测出2050年该区域森林植被的固碳潜力。结果显示:(1)2010年贵州省东南部森林植被碳蓄积量为106.22 TgC,占贵州省森林植被碳蓄积量的63.01%,占全国森林植被碳蓄积量的1.36%;平均碳密度32.44 MgC/hm2,是贵州省森林植被平均碳密度的93%,全国森林植被平均碳密度的76%,碳密度空间分布呈现由西部向东部增加趋势且东部高于平均水平。(2)1990-2000年间森林植被碳蓄积量增加了30.67 TgC;2000-2010年间森林植被碳蓄积量增加了49.55 TgC,其中,退耕还林导致森林植被碳蓄积量增加了31.09 TgC。(3)以2010年为基准年,假设40 a后贵州省东南部森林面积保持稳定,且不考虑轮伐期的未来情景下,至2050年该区域森林植被碳蓄积量将达到153.38 TgC,其增量可达47.16 TgC,表明贵州省东南部森林具有较大的碳增汇潜力。  相似文献   

14.
Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, a case study was conducted in Yulin City, Shaanxi Province, China. Data of SOC were based on general soil survey in 1982 and repeated soil sampling in 2003. Soil organic carbon content (SOCC) was determined by K2Cr3O2-FeSO4 titration method, and soil organic carbon density (SOCD) was calculated by arithmetic average and area weighted average method, respectively. On average, SOCC and SOCD of the arable layer in the study area from 1982 to 2003 had increased 0.5 Ig/kg and 0.16kg/m2, respectively. Considering main soil types, the widest distributed Arid-Sandic Entisols had lowest values and increments of SOCC and SOCD during the study period; while the second widest Los-Orthic Entisols had higher values and increments of SOCC and SOCD, compared to the mean values of the whole region. The results indicated that reversed desertification process was due to the modification of land use and management practices, such as natural vegetation recovery, planting grass, turning arable land to grassland, and soil and water conservation etc., which can improve SOCC and SOCD and thus enhance soil C sequestration.  相似文献   

15.
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.  相似文献   

16.
In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and o.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg^1, 177 μgCO2·g^-1·day^-1 and 1.32 % found in cultivated land use, respectively. The organic matter was considerably higher content in the forest areas than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillie horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development.  相似文献   

17.
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.  相似文献   

18.
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.  相似文献   

19.
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.  相似文献   

20.
The raising concentration of atmospheric CO_2 resulted in global warming. The forest ecosystem in Tibet played an irreplaceable role in maintaining global carbon balance and mitigating climate change for its abundant original forest resources with powerful action of carbon sink. In the present study, the samples of soil and vegetation were collected at a total of 137 sites from 2001 to 2018 in Tibet. Based on the field survey of Tibet's forest resources and 8~(th) forest inventory data, we estimated the carbon storage and carbon density of forest vegetation(tree layer, shrub, grass, litter and dead wood) and soil(0-50 cm) in Tibet. Geostatistical methods combined with Kriging spatial interpolation and Moran's I were applied to reveal their spatial distribution patterns and variation characteristics. The carbon density of forest vegetation and soil in Tibet were 74.57 t ha~(-1) and 96.24 t ha~(-1), respectively. The carbon storage of forest vegetation and soil in Tibet were 344.35 Tg C and 440.53 Tg C, respectively. Carbon density of fir(Abies forest) was 144.80 t ha~(-1) with the highest value among all the forest types. Carbon storage of spruce(Picea forest) was the highest with 99.09 Tg C compared with other forest types. The carbon density of fir forest and spruce forest both increased with the rising temperature and precipitation. Temperature was the main influential factor. The spatial distribution of carbon density of forest vegetation, soil, and ecosystem in Tibet generally showed declining trends from western Tibet to eastern Tibet. Our results facilitated the understanding of the carbon sequestration role of forest ecosystem in the Tibet. It also implied that as the carbon storage potential of Tibet's forests are expected to increase, these forests are likely to serve as huge carbon sinks in the current era of global warming and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号