首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
针对中国南部地区地势西高东低、沿海与内陆存在差异等情况,分析中国南部地区Tm与地面温度、测站高度、季节变化以及纬度的关系,利用中国南部地区19个探空站2015~2017年的探空数据,在Bevis公式的基础上建立只考虑地面温度的线性模型(Tm-SC1模型)和与地面温度、高程、季节变化以及纬度有关的新Tm模型(Tm-SC2模型)。以2018年的探空数据为参考值,对Tm-SC1模型和Tm-SC2模型进行精度验证,并与广泛使用的Bevis公式和GPT3模型进行精度比较。结果表明,Tm-SC1模型的年均偏差和均方根误差(RMS)分别为0.76 K和2.57 K,相比Bevis模型和GPT3模型,其精度(RMS值)分别提高13.8%和2.2%;Tm-SC2模型的年均偏差和均方根误差(RMS)分别为-0.10 K和1.64 K,相比Bevis模型和GPT3模型其精度(RMS值)分别提高44.9%和37.6%。Tm-SC2模型用于GNSS水汽计算导致的理论RMS误差和相对误差分别为0.16 mm和0.43%。因此,Tm-SC2模型更适用于中国南部地区的GNSS水汽探测以及气象研究。  相似文献   

2.
针对区域相对高程对Tm模型影响研究领域的空缺,基于已有的对流层顶经验模型,讨论区域相对高程对Tm模型的影响,并在此基础上构建中国区域的h0Tm回归模型,同时建立青藏高原地区的区域模型h0Tm-Qz。模型检验结果表明:1)以ERA5格网数据为参考值,h0Tm模型的RMS为2.43 K,相比于Bevis公式和GPT2w-1模型,精度分别提高了1.15 K(32%)和0.63 K(21%);2)以探空数据为参考值,h0Tm模型的RMS为2.48 K,相比于Bevis公式和GPT2w-1模型精度分别提高了1.19 K(32%)和2.06 K(45%),h0Tm模型在中国区域表现出较低的误差和良好的稳定性,尤其是在中国西部地区表现出更为显著的优势;3)顾及区域相对高程的青藏高原区域模型h0Tm-Qz相较于该地区的单因子(Ts)区域模型TsTm-Qz和Bevis公式,精度分别提高了0.54 K(19%)和2.50 K(51%)。  相似文献   

3.
以中国西南地区2015~2017年探空数据为实验数据,使用多层感知器(MLP)神经网络回归方法建立西南地区的加权平均温度(Tm)模型。将气象参数(地表温度、水汽压)和非气象参数(高程、纬度和年积日)作为模型输入因子,由数值积分法计算得到的Tm作为学习目标,通过神经网络模型进行迭代训练从而得到中国西南地区的Tm。以2018年探空站Tm数据为参考值,对MLP模型精度进行验证,并与Bevis模型和GPT3模型进行对比分析。结果表明,MLP模型的年均RMSE和年均bias分别为1.99 K和0.15 K,比Bevis模型、GPT3模型年均RMSE分别降低1.36 K(40.6%)和1.51 K(43.1%),年均bias分别下降0.70 K(82.4%)和1.04 K(87.4%),且该模型在中国西南区域不同高程、纬度和季节的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

4.
利用中国区域2015~2017年探空数据,建立一种顾及地表温度、地表水汽压、高程和纬度的中国区域大气加权平均温度Tm模型(BET模型)。以2018年探空站Tm数据为参考值,分析BET模型精度,并与Bevis模型和GPT3模型进行对比。结果表明,BET模型年均RMSE与bias分别为3.15 K和0.04 K,相比于Bevis模型、1°×1°分辨率的GPT3模型和5°×5°分辨率的GPT3模型,年均RMSE分别降低29.2%、32.8%和39.1%,年均bias分别降低96.4%、96.7%和97.4%,且该模型在中国区域不同高程和纬度上的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

5.
选用2012~2017年Kings Park 站探空资料,基于迭代最小二乘方法构建2种香港地区顾及高度改正的加权平均温度模型--Tm_hk1和Tm_hk2,并利用2018年探空资料对模型在香港地区的精度和适用性进行评估。结果表明,在香港地区,依赖测站温度的Tm_hk1模型具有较高的精度,年均偏差优于0.3 K,均方根误差优于1.8 K,与Bevis公式和GPT2w模型相比,Tm_hk1模型的精度分别提升35.4%和29.7%;而不依赖气象参数的Tm_hk2模型与GPT2w模型的精度相当,年均方根误差均优于2.5 K,Bevis公式的精度最差(RMS为2.7 K),且具有较大负偏差(bias为-1.8 K)。从季节性分析可知,Bevis公式、Tm_hk2 和GPT2w模型精度具有明显的季节性变化,总体为夏季精度较高(RMSE为1.3~2.2 K),冬季精度较低(RMSE为3.0~4.4 K);Tm_hk1模型在各季节均具有最高精度(RMSE为1.4~2.4 K)和适用性。  相似文献   

6.
采用中国区域2017~2018年与GNSS站并址的49个探空站资料对GPT3模型估算的气象参数的精度进行评估,再利用49个GNSS站结合GPT3模型估算的气象参数反演日均大气可降水量PWV,并采用与GNSS站并址的探空站数据对其精度进行评定。实验得出:1)在中国地区,1°分辨率的GPT3模型的精度和稳定性优于5°分辨率,其气压、气温和大气加权平均温度Tm的偏差均值分别为0.73 hPa、1.34 K和-1.67 K,均方根误差均值分别为4.21 hPa、3.75 K和4.15 K;2)利用GPT3模型提供的气温结合Bevis经验公式反演的PWV与GPT3模型提供的Tm反演的PWV精度相当,且2种方法反演的PWV和探空资料实测地表温度反演的PWV呈现很好的一致性,在我国青藏高原和西北地区反演PWV的精度优于我国南方和北方地区。  相似文献   

7.
结合粒子群优化算法和BP神经网络,利用中国区域88个探空站2015-2017年的数据,以地表温度、地表水汽压、纬度、高程、年积日作为模型输入因子,以积分法获得的Tm值为学习目标,建立适用于中国区域的Tm模型PSOTM。以2018年探空数据为参考值评定PSOTM模型精度,并与Bevis、GPT3、传统BP神经网络(BPTM)、GRNN神经网络(GRNNTM)模型的计算结果进行对比。结果表明,PSOTM模型年均RMSE为3.08 K,相对于Bevis、GPT3、BPTM和GRNNTM模型分别降低26.84%、35.97%、15.38%和4.94%;PSOTM模型年均bias为0.32 K,相对于Bevis、GPT3和BPTM模型分别降低68.93%、82.42%和72.41%,较GRNNTM模型升高37.50%。PSOTM模型在中国区域不同纬度和高程的精度与稳定性优于Bevis、GPT3和BPTM模型,具有良好的适用性。  相似文献   

8.
基于安徽省23个CORS站数据解算天顶对流层延迟(ZTD),评估GPT3+Hopfield和GPT3+Saastamoinen两种对流层组合模型的适用性,并利用探空数据分析GPT3模型估计大气加权平均温度(Tm)和反演大气可降水量(PWV)的精度。结果表明:1)GPT3+Saastamoinen组合模型的ZTD精度优于GPT3+Hopfield组合模型,GPT3模型的ZTD精度具有显著的时空分布特征,皖南精度低于皖北,且春、冬季精度优于夏、秋季;2)在安徽地区,GPT3模型2种格网分辨率的Tm精度基本相当,平均偏差在-2.0 K左右,RMS值在4.5 K左右;3)在安徽地区,基于GPT3模型气象参数反演的PWV(GPT3-PWV)与探空站的PWV有较高的一致性,且同样具有时空变化特征,由皖南向皖北逐渐降低,夏季最大、冬季最小。  相似文献   

9.
以2015年GGOS Atmosphere格网产品和探空站资料为参考值,评价GPT2w模型在中国地区计算对流层加权平均温度Tm的精度和适用性。结果表明:1)在中国地区,1°分辨率的GPT2w模型精度和稳定性优于5°分辨率,且GPT2w模型表现出显著的系统性误差;2)Tm的bias和RMS误差均具有明显的时空变化特性,季节变化表现为春冬季较大、夏季较小,空间变化上RMS误差表现为随纬度增加而变大;3)受地形起伏和Tm日周期变化影响,Tm在中国西部和东北地区误差较大。
  相似文献   

10.
针对GPT2w模型误差累积所导致的天顶对流层延迟(zenith tropospheric delay, ZTD)和大气可降水量(precipitable water vapor, PWV)精度不高的问题,利用2017年长三角地区7个探空站和2个GNSS站的实测数据检验GPT2w模型获取的气压、温度、水汽压、加权平均温度(Tm)和ZTD等参数的精度,并融合GNSS解算得到的ZTD(GNSS-ZTD)与GPT2w模型获取的气象参数,提高PWV反演精度。结果表明:1)近地面处的气压、温度和水汽压的bias分布在-3~4 mbar、-7~7 K和-9~2 mbar之间,精度较高;2)GPT2w模型获取的Tm在长三角地区适用性较好,年均bias和RMS分别为-1.21 K和6.89 K;3)基于GPT2w模型解算的ZTD的bias和RMS均值分别为1.4 cm和9.4 cm,精度明显低于基于实测气象数据获得的GNSS-ZTD;4)参数融合法计算的PWV与GNSS-PWV精度相当,该方法可用于无实测气象参数时实时获取PWV。  相似文献   

11.
利用长三角地区多个探空站气象资料、GNSS观测数据和GPT3模型,以探空资料的大气可降水量(PWV)为参考值,评估GPT3模型、两种地面气象资料法和GNSS等4种方法计算的PWV精度、可靠性和时效性.结果表明,GPT3模型可实时获取PWV,但精度较低;GNSS-PWV精度最高,但需要实测气象参数,会限制其应用范围;两种...  相似文献   

12.
????GPS?????????????(PWV)??????????????????????????SA????????????????GPS???????????????????GPS????????????????????????θ???????????????ù??????????????????????????С??100 m???????????????????μ????????????Saastamoinen?????????????????????????????????IGS???BJFS??KUNM??LHAZ??TWTF??????????????????????????????????GPS PWV????????????????????RS PWV?????ж???????????????????????????θ???????????????????GPS PWV??RS PWV??????????????1~3 mm?????????????????????????????????GPS????PWV??  相似文献   

13.
利用IGRA提供的全球593个无线电探空站2014年的探空资料,对Bevis 经验公式、GTm-Ⅱ和GTm-Ⅲ模型进行精度验证,对各模型随纬度、季节的变化规律进行分析研究。结果表明,在全球范围内,GTm-Ⅲ模型的总体精度(MAE=3.26 K, RMS=4.10 K)要优于另外两个模型;3种模型的精度在中低纬度地区较高,高纬度地区较低;Bevis公式和GTm-Ⅱ模型的精度在南北半球具有不对称性;各模型精度的季节性变化规律基本一致,模型的RMS在不同季节相差2~3 K。  相似文献   

14.
针对东南沿海地区GNSS大气可降水量(PWV)计算过程参数多、数据量大、效率不高且易产生累积误差等问题,本文基于中国东南沿海地区2017~2018年18个CORS站的GNSS数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(Ts)和地面大气压(Ps)之间的线性关系,并利用多元线性拟合方法建立多因子GNSS-PWV直接转换模型,为研究区提供简捷高效的PWV计算方法。结果表明,GNSS-PWV与ZTD、Ps和Ts之间具有良好的相关性,相关系数分别为0.98、-0.65和0.78;基于ZTD、Ps和Ts的多因子PWV模型RMS为0.33 mm,精度最高,明显优于基于ZTD的单因子PWV模型(4.66 mm),而基于ZTD和Ps的双因子PWV模型RMS为0.50 mm。  相似文献   

15.
使用亚洲区域18个IGS测站和中国区域内16个探空站2016~2018年的数据,研究GPT3模型反演天顶对流层延迟(ZTD)和大气可降水量(PWV)的精度,并与其他GPT系列模型进行对比。结果表明,GPT3-1模型估计的ZTD的bias均值和最大值均最小,分别为1.34 mm和14.06 mm;GPT3模型整体精度略优于GPT2w模型,优于GPT2模型。探空站处GPT3模型反演的PWV的bias和RMSE均表现出较强的季节性特征;由GPT3模型反演的PWV的月均值可知,GPT3-1模型比GPT3-5模型具有更高的精度和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号