首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 798 毫秒
1.
Surplus production models(SPMs) are among the simplest and most widely used fishery stock assessment models. The catch-effort data analysis(CEDA) and a surplus production model incorporating covariates(ASPIC) are softwares for analyzing fishery catch and fishing effort data using nonequilibrium SPMs. In China Fishery Statistical Yearbook, annual fishery production and fishing effort data of the Yellow Sea, Bohai Sea, East China Sea, and South China Sea have been published from 1979 till present.Using its catch and fishing effort data from 1980 to 2018, we apply the CEDA and ASPIC to evaluate fishery resources in Chinese coastal waters. The results show that the total maximum sustainable yield(MSY) estimate of the four China seas is 10.05–10.83 million tons, approximately equal to the marine fishery catch(10.44 million tons) reported in 2018. It can be concluded that China's coastal fishery resources are currently fully exploited and must be protected with a precautionary approach. Both softwares produced similar results; however, the CEDA had a much higher R2 value(above 0.9) than ASPIC(about 0.2), indicating that CEDA can better fit the data and therefore is more suitable for analyzing the fishery resources in the coastal waters of China.  相似文献   

2.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

3.
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter. This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and s  相似文献   

4.
Anchovy (Engraulis japonicus), a small pelagic fish and food of other economic fishes, is a key species in the Yellow Sea ecosystem. Understanding the mechanisms of its recruitment and biomass variation is important for the prediction and management of fishery resources. Coupled with a hydrodynamic model (POM) and a lower trophic level ecosystem model (NEMURO), an individual-based model of anchovy is developed to study the influence of physical environment on anchovy’s biomass variation. Seasonal variations of circulation, water temperature and mix-layer depth from POM are used as external forcing for NEMURO and the anchovy model. Biomasses of large zooplankton and predatory zooplankton which anchovy feeds on are output from NEMURO and are controlled by the consumption of anchovy on them. Survival fitness theory related to temperature and food is used to determine the swimming action of anchovy in the model. The simulation results agree well with observations and elucidate the influence of temperature in over-wintering migration and food in feeding migration.  相似文献   

5.
Application of the thermocline equations in the thermocline areas and the boundary layer and the asymptotic matching techniques in each boundary in order to satisfy the surface and bottom conditions yielded a theoretical 2- D solution of the vertical thermohaline circulation of the Southern Yellow Sea in summer when the quasi-statically varying seasonal thermocline (density layer) is the background density structure , the deviations from which cause the secondary vertical circulation . The results show that the thermocline can be considered as an internal boundary or a barrier to the vertical heat advection so that in the central areas of the Southern Yellow Sea or the center of the Yellow Sea Cold Water Mass(YCWM)> the downwelling in the upper layer and upwelling in the lower or bottom layer form a double cell vertical circulation . The solution is similar to Hu's conceptual model ( 1986) in the central areas of the YCWM and is consistent with observed temperature . salinity and dissolved oxygen distri  相似文献   

6.
Petroleum geological framework and hydrocarbon potential in the Yellow Sea   总被引:2,自引:0,他引:2  
Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.  相似文献   

7.
Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast, large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River’s submerged delta have much lower 87Sr/86Sr ratios (0.716 2–0.718 0) than those of the Shandong Peninsular mud wedge (0.721 6–0.724 9), which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang River sediments, suggesting multiple sources of the sediment in the area.  相似文献   

8.
The circulation of Yellow Sea Cold Water Mass(YSCWM) in the Southern Yellow Sea is investigated using a diagnostic 2D MITgcm model. The resolution of the computational grid is 900 m in the horizontal and 2 m in the vertical where an initial temperature distribution corresponding to a typical measured Yellow Sea Cold Water Mass was applied. The existence of YSCWM that causes fluid density difference, is shown to produce counter-rotating cyclonic horizontal eddies in the surface layer: the inner one is anti-cyclonic(clockwise) and relatively weaker(8–10 cm s-1) while the outer one is cyclonic(anti-clockwise) and much stronger(15–20 cm s-1). This result is consistent with the surface pattern observed by Pang et al.(2004), who has shown that a mesoscale anti-cyclonic eddy(clockwise) exists in the upper layer of central southern Yellow Sea, and a basin-scale cyclonic(anticlockwise) gyre lies outside of the anti-cyclonic eddy, based on the trajectories and drifting velocities of 23 drifters. Below the thermocline, there is an anti-cyclonic(clockwise) circulation. This complex current eddy system is considered to be capable of trapping suspended sediments and depositing them near the front between YSCWM and the coastal waters off the Subei coast, providing an explanation on the sediment depth and size distribution of mud patches in the Southern Yellow Sea. Moreover, sensitive test scenarios indicate that variations of bottom friction do not substantially change the main features of the circulation structure, but will reduce the bottom current velocity, increase the surface current velocity and weaken the upwelling around the frontal area.  相似文献   

9.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

10.
To solve nutrient flux and budget among waters with distinct salinity difference for water-saltnutrient budget,a traditional method is to build a stoichiometrically linked steady state model.However,the traditional way cannot cope appropriately with those without distinct salinity difference that parallel to coastline or in a complex current system,as the results would be highly affected by box division in time and space,such as the Changjiang(Yangtze) River estuary(CRE) and adjacent waters(30.75°-31.75°N,122°10′-123°20′E).Therefore,we developed a hydrodynamic box model based on the traditional way and the regional oceanic modeling system model(ROMS).Using data from four cruises in 2005,horizontal,vertical and boundary nutrient fluxes were calculated in the hydrodynamic box model,in which flux fields and the major controlling factors were studied.Results show that the nutrient flux varied greatly in season and space.Water flux outweighs the nutrient concentration in horizontal flux,and upwelling flux outweighs upward diffusion flux in vertical direction(upwelling flux and upward diffusion flux regions overlap largely all the year).Vertical flux in spring and summer are much greater than that in autumn and winter.The maximum vertical flux for DIP(dissolved inorganic phosphate) occurs in summer.Additional to the fluxes of the Changjiang River discharge,coastal currents,the Taiwan Warm Current,and the upwelling,nutrient flux inflow from the southern Yellow Sea and outflow southward are found crucial to nutrient budgets of the study area.Horizontal nutrient flux is controlled by physical dilution and confined to coastal waters with a little into the open seas.The study area acts as a conveyer transferring nutrients from the Yellow Sea to the East China Sea in the whole year.In addition,vertical nutrient flux in spring and summer is a main source of DIP.Therefore,the hydrodynamic ROMS-based box model is superior to the traditional one in estimating nutrient fluxes in a complicated hydrodynamic current system and provides a modified box model approach to material flux research.  相似文献   

11.
The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000–2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%–20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum’s ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.  相似文献   

12.
Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.  相似文献   

13.
Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in different years.Two indexes are calculated to represent the westward shift(WSI) and northward extension(NEI) of the warm water in the Yellow Sea(YS).Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years,respectively.The Empirical Orthogonal Function(EOF) ...  相似文献   

14.
INTRODUCTIONThemostimportantandgenerallymostdifficultprobleminbiologicalassessmentoffisheriesisprobablytherelationshipbetweenstockandrecruitment(Hilbornetal.,1992).Analysisofstockrecruitment(SR)dataismostoftendonebyfittingvariouscurvesofSRrelationshiptoth…  相似文献   

15.
Based on catch and effort data of tuna longline fishery operating in the South Pacific Ocean, the South Pacific al-bacore stock was assessed by an improved Schaefer model. The results revealed that the intrinsic growth rate was about 1.28374 and carrying capacities vareied in the range from 73734 to 266732 metric tons. The growth ability of this species is remarkable. Stock dynamics mainly depends on environmental conditions. The stock is still in good condition. However, the continuous decreasing of biomass in recent years should be noticed.  相似文献   

16.
A winter onshore warm tongue extending from the Yellow Sea Warm Current to the southern Jiangsu coast, and an of fshore cold tongue extending from the southern Jiangsu coast to the southwest of Jeju Island(South Korea), are newly identified based on the sea-surface temperature from satellite remote sensing, and further confirmed by the distribution of suspended sediments. In addition, there are two obvious thermal fronts associated with the onshore warm tongue and off shore cold tongue. The narrow gap between the two thermal fronts is supposed to be the pathway for the off shore transport of cold coastal water and suspended sediments. The concurrence of onshore warm and of fshore cold tongues suggests the concurrence of onshore and off shore currents in the western Yellow Sea in winter, which seems to be inconsistent with the previously accepted view that, in winter, the Yellow Sea Coastal Current flows from the Old Huanghe Delta to the southwest of Jeju Island. This distinctive phenomenon helps establish an updated view of the circulation in the western Yellow Sea in winter.  相似文献   

17.
This study investigates the migration and distribution of the warm-temperate fish Nibea albiflora. Their spawning migration and wintering migratory routes within in the Yellow Sea are described in detail. Considering the main physical features and environment of the Yellow Sea, it appears to be have one wintering ground and three migratory routes from the wintering ground to the spawning grounds. The fish begin to migrate from the wintering ground to the spawning grounds in the northwest region of the Yellow Sea in late March. The Yellow Sea has three spawning grounds. The first is located near the Yalu River on the Liaodong Peninsula and the second one is located in Rushan Bay of Shandong Peninsula. The third spawning ground is located in Haizhou Bay in the southern region of the Yellow Sea. This study found that the temperature of the Yellow Sea influences the migration of N. albiflora, and that the migratory routes coincide with the thermal fronts in the sea. Nutrients for juvenile fish are taken from the coastal upwelling area. Chlorophyll is a good environmental indicator of phytoplankton biomass and thereby provides the status of biological resources. Different types of sediment in near-shore zones are also of practical significance for the growth of fish. The study of the effects of marine environments on the migration of various fishes is not only significant to the fishing industry, but can also provide a scientific basis for the understanding of the ecological implications of the relevant physical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号