首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal current data from the Zhoushan sea area, which indicate that the main tidal cycle near Hulu Island and Taohua Island is semi-diurnal cycle, the diurnal cycle is subordinate. Both their intensities are changed periodically, meanwhile, the diurnal tide becomes stronger when semi-diurnal tide becomes weak. The intensity of baroclinic tidal current weakens at first and then strengthens from top to bottom. Then, in this paper, the Gregg-Henyey(G-H) parameterization method is adopted to calculate the turbulent kinetic energy dissipation rate based on the measured temperature and tidal current data. The results of which shown that the turbulent kinetic energy dissipation rate around Hulu Island is higher than that around Taohua Island. In most cases, the turbulent kinetic energy dissipation rate during spring tide is larger than that during the neap tide; the turbulent kinetic energy dissipation rate in the surface layer and the bottom layer are higher than that in the intermediate water; the changes of turbulent kinetic energy dissipation rate and tidal current are basically synchronous. The modeled turbulent kinetic energy dissipation rate gets smaller with the increase of the stratification, however, gets larger with the increase of shearing.  相似文献   

2.
Wave breaking on turbulent energy budget in the ocean surface mixed layer   总被引:2,自引:0,他引:2  
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).  相似文献   

3.
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.  相似文献   

4.
Oceanic turbulence plays an important role in coastal flow. However, as the effect of an uneven lower boundary on the adjacent turbulence is still not well understood, we explore the mechanics of nearshore turbulence with a turbulence-resolving numerical model known as a large-eddy-simulation model for an idealized scenario in a coastal region for which the lower boundary is a solid sinusoidal wave. The numerical simulation demonstrates how the mechanical energy of the current is transferred into local turbulence mixing, and shows the changes in turbulent intensity over the continuous phase change of the lower topography. The strongest turbulent kinetic energy is concentrated above the trough of the wavy surface. The turbulence mixing is mainly generated by the shear forces; the magnitude of shear production has a local maximum over the crest of the seabed topography, and there is an asymmetry in the shear production between the leeward and windward slopes. The numerical results are consistent with results from laboratory experiments. Our analysis provides an important insight into the mechanism of turbulent kinetic energy production and development.  相似文献   

5.
In this paper,we present measurements of velocity,temperature,salinity,and turbulence collected in Prydz Bay,Antarctica,during February,2005.The dissipation rates of turbulent kinetic energy(ε) and diapycnal diffusivities(K z) were estimated along a section in front of the Amery Ice Shelf.The dissipation rates and diapycnal diffusivities were spatially non-uniform,with higher values found in the western half of the section where ε reached 10-7 W/kg and K z reached 10-2 m 2 /s,about two and three orders of magnitude higher than those in the open ocean,respectively.In the western half of the section both the dissipation rates and diffusivities showed a high-low-high vertical structure.This vertical structure may have been determined by internal waves in the upper layer,where the ice shelf draft acts as a possible energy source,and by bottom-generated internal waves in the lower layer,where both tides and geostrophic currents are possible energy sources.The intense diapycnal mixing revealed in our observations could contribute to the production of Antarctic Bottom Water in Prydz Bay.  相似文献   

6.
During the two cruises in March and July of 2011, the tidal cycling of turbulent properties and the T/S profiles at the same location in seasonally stratified East China Sea (ECS) were measured synchronously by a bottom-mounted fast sampling ADCP (acoustic Doppler current profiler) and a RBR CTD (RBR-620) profiler. While focusing on the tide-induced and stratification’s impact on mixing, the Reynolds stress and the turbulent kinetic energy (TKE) production rate were calculated using the ‘variance method’. In spring, the features of mixing mainly induced by tides were clear when the water column was well-mixed. Velocity shear and turbulent parameters intensified towards the seabed due to the bottom friction. The components of the velocity shear and the Reynolds stress displayed a dominant semi-diurnal variation related to velocity changes caused by the flood and ebb of M2 tide. Stratification occurred in summer, and the water column showed a strongly stratified pycnocline with a characteristic squared buoyancy frequency of N2 ~ (1–6) × 10?3 s?2. The components of the velocity shear and the Reynolds stress penetrated upwards very fast from the bottom boundary layer to the whole water column in spring, while in summer they only penetrated to the bottom of the pycnocline with a relatively slow propagation speed. In summer, the TKE production within the pycnocline was comparable with and sometimes larger than that in the well-mixed bottom layer under the pycnocline. Considering the associated high velocity shear, it is speculated that the mixing in the pycnocline is a result of the local velocity shear.  相似文献   

7.
Laboratory experiments were conducted to investigate the evolution of interfacial internal solitary waves(ISWs) incident on a triangular barrier. ISWs with different amplitudes were generated by gravitational collapse. The ISW energy dissipation and turbulence processes were calculated as waves passed over the triangular barrier. Experimental results showed that ISWs were reflecting back off the triangular barrier, and shoaling ISWs led to wave breaking and mixing when waves propagated over the obstacle. Wave instability created the dissipation of energy as it was transmitted from waves to turbulence. The rate of ISW energy dissipation, the maximum turbulent dissipation, and the buoyancy diffusivity linearly increased with the increase in the incident wave energy.  相似文献   

8.
Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we report a potentially significant yet rarely discussed pathway to turbulent mixing in the convective mixed layer. During convection, as surface fluid drops rapidly in the form of convective plumes, intense turbulence kinetic energy(TKE) generated via surface processes such as wave breaking is advected downward, enhancing TKE and mixing through the layer. The related power, when integrated over the global ocean except near the surface where the direct effect of breaking waves dominates, is estimated at O(1)TW, comparable to that required by maintaining the Meridional Overturning Circulation(MOC). The mechanism in question therefore deserves greater research attention, especially in view of the potential significance of its proper representation in climate models.  相似文献   

9.
A laboratory experiment was conducted inside a wind wave tank to investigate the wave induced turbulence. In this experiment, the wave surface elevation and velocity beneath the water surface were measured simultaneously to investigate the relation between the wave status and wave induced turbulence. The profile of the turbulent dissipation rate and Reynolds stress were calculated using experimental data. The effect of the wave status on turbulence is investigated with regard to the wind wave, swell, and mixed wave conditions. It was depicted that the turbulence decreased with increasing depth from the water surface and that the turbulence that was induced by a wave with larger wavelength and wave height is much stronger for the same wave status. Finally, we observed that the wind wave is more effective in activating the wave induced turbulence.  相似文献   

10.
Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formula- tion of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply sur- face-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave–mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The bal- ance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.  相似文献   

11.
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K0.1); transitional flow(0.1 k/K1); and turbulent flow(k/K1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.  相似文献   

12.
Internal tides generated by a rough sea floor are an important source of mixing in the abyssal ocean. Two linear models are employed to evaluate the conversion rate from barotropic tides to internal tides and the energy distribution in each mode. Considering the periodicity of internal tides, the topography is represented by periodically distributed knife edges and sinusoidal ridges within one wavelength of mode-1 internal tides. The knife edges generate greater internal tides than the sinusoidal ridges due to their sharp shape, which approximates an extremely supercritical condition. Energy flux concentrates in modes whose numbers are multiples of the knife edge or ridge number. Then, a fully nonlinear model that integrates viscosity and diffusion is implemented, and its results are compared with those of the linear model. Internal wave rays generated in the nonlinear model show a distribution similar to the linear models' prediction. High dissipation rates coincide with the rays, suggesting that nonlinear wave-wave interaction is a dominant mechanism for internal tide dissipation in the abyssal ocean.  相似文献   

13.
Internal waves play a crucial role in ocean mixing, and density perturbation and energy flux are essential quantities to investigate the generation and propagation of internal waves. This paper presents a methodology for calculating density perturbation and energy flux of internal waves only using a velocity field that is based on linearized equations for internal waves. The method was tested by numerical simulations of internal waves generated by tidal flowing over a Gaussian topography in a stratified fluid. The density perturbations and energy fluxes determined using our method that only used velocity data agreed with density perturbations and energy fluxes determined by the equation of state based on temperature data. The mean relative error (MRE) and root mean square error (RMSE) between the two methods were lower than 5% and 10% respectively. In addition, an experiment was performed to exam our method using the velocity field measured by Particle Image Velocimetry (PIV), and the setup of the experiment is consistent with the numerical model. The results of the experiments calculated by the methods using PIV data were also generally equal to those of the numerical model.  相似文献   

14.
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas. Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%. The velocity and depth of the viscous debris flow were measured, processed, and subsequently used to characterize the viscous debris flow in the drainage channel. Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here. However, the flow patterns in the two types of channels were similar at other points. These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure. In addition, in the smooth channel, the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure. Furthermore, the viscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%. Finally, the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased; the maximum energy dissipation ratio observed was 62.9% (where B = 0.6 m and L/w = 6.0).  相似文献   

15.
Hu  Shijian  Liu  Lingling  Guan  Cong  Zhang  Linlin  Wang  Jianing  Wang  Qingye  Ma  Jie  Wang  Fujun  Jia  Fan  Feng  Junqiao  Lu  Xi  Wang  Fan  Hu  Dunxin 《中国海洋湖沼学报》2020,38(4):1092-1107
Near-inertial oscillation is an important physical process transferring surface wind energy into deep ocean.We investigated the near-inertial kinetic energy(NIKE) variability using acoustic Doppler current profiler measurements from a mooring array deployed in the tropical western Pacific Ocean along130°E at 8.5°N,11°N,12.6°N,15°N,and 17.5°N from September 2015 to January 2018.Spatial features,decay timescales,and significant seasonal variability of the observed NIKE were described.At the mooring sites of 17.5°N,15°N,and 12.6°N,the NIKE peaks occurred in boreal autumn and the NIKE troughs were observed in boreal spring.By contrast,the NIKE at 11°N and 8.5°N showed peaks in winter and troughs in summer.Tropical cyclones and strong wind events played an important role in the emergence of high-NIKE events and explained the seasonality and latitudinal characteristics of the observed NIKE.  相似文献   

16.
Currents and mixing in the northern South China Sea   总被引:1,自引:0,他引:1  
We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea (SCS) from August 4 to September 6, 2007, and found that the characteristics of barotropic and baroclinic tides are mainly diurnal. During the observation period, we also estimated the mixing before and after the passage of Typhoon Pabuk. We found that the internal-wave-scale dissipation rate, the turbulent dissipation rate, and the mixing rate in every water layer increased by about an order of magnitude after the typhoon passage. We analyzed a case of abrupt strong current and calculated the mixing rate before, during, and after the typhoon event. The results show that the internal-wave-scale dissipation rate and the mixing rate in every water layer increased by about two orders of magnitude during the event, while the turbulent dissipation rate increased by about an order of magnitude. Passage of the abrupt strong current could also have increased the mixing rate of affected seawater by more than an order of magnitude. However, the passage of the typhoon differed in that there was an increase in mixing only in the lower layer where the abrupt strong current was particularly strong. The variation of the mixing rate may help us to understand the effects of typhoons and abrupt strong currents on the mixing of seawater.  相似文献   

17.
In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy(RPE) change, the RPE time change rate(RPETCR), the grid Reynolds number, the root mean square(RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter Г in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of Г and L. When the product of Г and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith closure. The dissipative scale in the Leith closure depends on the parameter L, and the dissipative intensity depends on the parameter Г. 5) Although optimal results may not be achieved by using the optimal parameters obtained from the 2D barotropic model in the 3D baroclinic simulation, the total energies are dissipative in all three closures. Dissipation is the strongest in the biharmonic viscosity closure, followed by that in the Leith closure, and that in the Laplacian viscosity closure is the weakest. Mesoscale eddies develop the fastest in the biharmonic viscosity closure after the baroclinic adjustment process finishes, and the kinetic energy reaches its maximum, which is attributed to the smallest dissipation of enstrophy in the biharmonic viscosity closure. Mesoscale eddies develop the slowest, and the kinetic energy peak value is the smallest in the Laplacian viscosity closure. Results in the Leith closure are between that in the biharmonic viscosity closure and the Laplacian viscosity closure.  相似文献   

18.
Floc breakup dynamics are studied by a sediment transport numerical model in an idealized tidal estuary that has a constant water depth and rapid flocculation of cohesive sediments. The focus is placed on the effects of boundary layer stratification induced by a bottom nepheloid layer on floc breakup and size distribution in the water column. In a neutrally stratified estuary, the floc size distribution follows a parabolic function with maximum values at the surface and bottom. The sediment-induced stratification in the bottom boundary layer increases the median floc sizes. Furthermore, sediment-voided convection caused by the settling lutocline generates significant turbulent kinetic energy dissipation and reduces floc size at the depth where the convective mixing happens. Below that depth, a weak local maxima in the floc size is predicted due to presence of the lutocline. The effect of sediment-stratified bottom boundary layer on the floc breakup can be consistently approximated by a linear regression between the maximal floc size and flux Richardson number.  相似文献   

19.
Floe breakup dynamics are studied by a sediment transport numerical model in an idealized tidal estuary that has a constant water depth and rapid flocculation of cohesive sediments. The focus is placed on the effects of boundary layer stratification induced by a bottom nepheloid layer on floe breakup and size distribution in the water column. In a neutrally stratified estuary, the floe size distribution follows a parabolic function with maximum values at the surface and bottom. The sediment-induced stratification in the bottom boundary layer increases the median floe sizes. Furthermore, sediment-voided convection caused by the settling lutocline generates significant turbulent kinetic energy dissipation and reduces floe size at the depth where the convective mixing happens. Below that depth, a weak local maxima in the floe size is predicted due to presence of the lutocline. The effect of sediment-stratified bottom boundary layer on the floe breakup can be consistently approximated by a linear regression between the maximal floe size and flux Richardson number.  相似文献   

20.
The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data. We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone. We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation. Furthermore, the eddy kinetic energy level (EKE) shows an annual cycle, maximum in April/May and minimum in December/January. Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes. The eddy field seems to be more zonal than meridional, and the energy containing length scale shows a surprising lag of 2–3 months in comparison with the 1-D and 2-D EKE level. A similar phenomenon is observed in individual eddies in this zone. The results show that in this eddy field band, the velocity shear may drive the EKE level change so that the eddy field takes another 2–3 months to grow and interact to reach a relatively stable state. This explains the seasonal evolution of identifiable eddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号