首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadISST and SODA datasets.Wind and heat flux datasets were used to discuss the mechanisms for these variations.Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole(IOD)events are significantly different.A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process,which does not take place at the subsurface layer.In the western pole,the surface anomalies last longer than the subsurface anomalies.The subsurface anomalies are strongly correlated with ENSO,while the relationship between the surface anomalies and ENSO is much weaker.And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer.The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields,while the heat flux effect is important on SST.  相似文献   

2.
The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.  相似文献   

3.
The formulation and justification of a three-layer baroclinic ocean model developed to simulate thegeneral circulation of the ocean are described in this paper.Test of the model in simulating the annualmean circulation patterns in the North Pacific under the prescribed atmospheric forcing,which consists ofthe climatological surface wind stress and sea surface heat flux,and comparison of the results withobservations showed that the model basically simulated the large scale features of the annual meancirculation patterns in the North Pacific Ocean such as those of the intensified western boundary currentsand the North Equatorial Currents and Undercurrents.But due to the coarse resolution of the model,some details of these currents were poorly reproduced.The seasonal variations of the North Pacific Oceancirculation driven by the seasonal mean sea surface wind stress was calculated,the different aspects of theseresults were analyzed and the main current(the intensified western boundary currents)transports we  相似文献   

4.
Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .  相似文献   

5.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

6.
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy field and mean flow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean flow to the eddy field in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy field and mean flow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they flank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean flow to the eddy field.  相似文献   

7.
Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC) under global warming over 400 years following the Representative Concentration Pathways (RCP) 4.5. The mode water and STCC first show a sharp weakening trend when the radiative forcing increases, but then reverse to a slow strengthening trend of smaller magnitude after the radiative forcing is stablized. As the radiative forcing increases during the 21st century, the ocean warming is surface-intensified and decreases with depth, strengthening the upper ocean’s stratification and becoming unfavorable for the mode water formation. Moving southward in the subtropical gyre, the shrinking mode water decelerates the STCC to the south. After the radiative forcing is stabilized in the 2070s, the subsequent warming is greater at the subsurface than at the sea surface, destabilizing the upper ocean and becoming favorable for the mode water formation. As a result, the mode water and STCC recover gradually after the radiative forcing is stabilized.  相似文献   

8.
In this paper, we use the optimum interpolation sea surface temperature (OISST) provided by the National Center for Environmental Prediction (NCEP) to replace the temperature in the top three layers in the ISHII data, and make use of the modified ISHII temperature data to calculate the thermosteric sea level (called modified steric sea level (SSL) hereafter). We subtract the modified SSL and the steric sea level (called ordinary SSL hereafter) derived from the ISHII temperature and salinity from the steric sea level (SSL) provided by the Gravity Recovery and Climate Experiment (GRACE), respectively, and find that the rms error of the difference of the former is obviously smaller than that of the latter. Therefore we reach the conclusion that under the assumption that the GRACE SSL is accurate, the modified SSL can reflect the true steric sea level more accurately. Making use of the modified SSL, we can find that the modified SSL in sea areas of different spatial scales shows an obvious rising trend in the upper 0-700 m layer for the period 1982-2006. The global mean SSL rises with a rate of 0.6 mm year-1 .The modified SSLs in sea areas of different spatial scales all show obvious oscillations with period of one year. There are oscillations with periods of 4-8 years in global oceans and with periods of 2-7 years in the Pacific. The Empirical Orthogonal Function method is applied to the sea areas of different spatial scales and we find that the first modes all have obvious 1-year period oscillations, the first mode of the global ocean has 4-8 year period oscillations, and that of the Pacific has 2-6 year period oscillations. The spatial distribution of the linear rising trend of the global modified SSL in the upper 0-700 m layer is inhomogeneous with intense regional characteristics. The modified SSL linear trend indicates a zonal dipole in the tropical Pacific, rising in the west and descending in the east. In the North Atlantic, the modified SSL indicates a meridional dipole, rising in the latitude band of 20°N-40°N and 45°N-65.5°N and descending obviously in the latitude band of 40°N-45°N.  相似文献   

9.
INTRODUCTIONThemonsoonhasacirculationfeaturethatisplanetaryinscaleandanidentifiablesignalregardingitssubsequentintensitysomeninemonthspriortotheactivestageofthesummermonsoon(WebsterandYang,1992).Furthermore,themagnitudeofthemonsoonvariabilityissubstantia…  相似文献   

10.
Long term sea level change and water mass balance in the South China Sea   总被引:1,自引:0,他引:1  
Sea level anomalies observed by altimeter during the 1993–2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and HOAPS freshwater flux data were analyzed to investigate the long term sea level change and the water mass balance in the South China Sea. The altimeter-observed sea level showed a rising rate of (3.5±0.9) mm yr-1 during the period 1993–2006, but this figure was considered to have been highly d...  相似文献   

11.
Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind.We used the Cross-Calibrated Multi-Platform(CCMP)24-year wind field data set to investigate the trends of wind energy over the South China Sea during 1988-2011.The results reveal a clear trend of increase in wind power density for each of three base statistics(i.e.,mean,90 th percentile and 99 th percentile)in all seasons and for annual means.The trends of wind power density showed obvious temporal and spatial variations.The magnitude of the trends was greatest in winter,intermediate in spring,and smallest in summer and autumn.A greater trend of increase was found in the northern areas of the South China Sea than in southern parts.The magnitude of the annual and seasonal trends over the South China Sea was larger in extreme high events(i.e.,90~(th) and 99~(th) percentiles)compared to the mean conditions.Sea surface temperature showed a negative correlation with the variability of wind power density over the majority of the South China Sea in all seasons and annual means,except for winter(41.7%).  相似文献   

12.
This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Standard Section and the Korea Oceanographic Data Center.Surface air temperature,meridional wind speed,and sea surface temperature data are used to describe the seasonal changes.Mean temperature of the two centers of the SYSCWM had diff erent long-term trends.The temperature of the center in the west of the SYSCWM was rising whereas that of the center in the east was falling.Mean temperature of the western center was related to warm water intrusion of the Yellow Sea Warm Current,the winter meridional wind,and the winter air temperature.Summer process played a primary role in the cooling trend of temperature in the eastern center.A decreasing trend of salinity in the eastern half of the SYSCWM showed that warm water intrusion from the south might weaken,as could the SYSCWM circulation.Weakened circulation provided less horizontal heat input to the eastern half of the SYSCWM.Less lateral heat input may have led to the decreasing trend in temperature of the eastern center of the SYSCWM.Further,warmer sea surface temperatures and less heat input in the deep layers intensifi ed the thermocline of the eastern SYSCWM.A stronger thermocline had less heat fl ux input from upper layers to this half of the SYSCWM.Stronger thermocline and weakened heat input can be seen as two main causes of the cooling temperature trend of the eastern center of the SYSCWM.  相似文献   

13.
The 21st century Maritime Silk Road(MSR) proposed by China strongly promotes the maritime industry. In this paper, we use wind and ocean wave datasets from 1979 to 2014 to analyze the spatial and temporal distributions of the wind speed, significant wave height(SWH), mean wave direction(MWD), and mean wave period(MWP) in the MSR. The analysis results indicate that the Luzon Strait and Gulf of Aden have the most obvious seasonal variations and that the central Indian Ocean is relatively stable. We analyzed the distributions of the maximum wind speed and SWH in the MSR over this 36-year period. The results show that the distribution of the monthly average frequency for SWH exceeds 4 m(huge waves) and that of the corresponding wind speed exceeds 13.9 ms~(-1)(high wind speed). The occurrence frequencies of huge waves and high winds in regions east of the Gulf of Aden are as high as 56% and 80%, respectively. We also assessed the wave and wind energies in different seasons. Based on our analyses, we propose a risk factor(RF) for determining navigation safety levels, based on the wind speed and SWH. We determine the spatial and temporal RF distributions for different seasons and analyze the corresponding impact on four major sea routes. Finally, we determine the spatial distribution of tropical cyclones from 2000 to 2015 and analyze the corresponding impact on the four sea routes. The analysis of the dynamic characteristics of the MSR provides references for ship navigation as well as ocean engineering.  相似文献   

14.
In the South China Sea(SCS), the subsurface chlorophyll maximum(SCM) is frequently observed while the mechanisms of SCM occurrence have not been well understood. In this study, a 1-D physical-biochemical coupled model was used to study the seasonal variations of vertical profiles of chlorophyll-a(Chl-a) in the SCS. Three parameters(i.e., SCM layer(SCML) depth, thickness, and intensity) were defined to characterize the vertical distribution of Chl-a in SCML and were obtained by fitting the vertical profile of Chl-a in the subsurface layer using a Gaussian function. The seasonal variations of SCMs are reproduced reasonably well compared to the observations. The annual averages of SCML depth, thickness, and intensity are 75 ± 10 m, 31 ± 6.7 m, and 0.37 ± 0.11 mg m-3, respectively. A thick, close to surface SCML together with a higher intensity occurs during the northeastern monsoon. Both the SCML thickness and intensity are sensitive to the changes of surface wind speed in winter and summer, but the surface wind speed exerts a minor influence on the SCML depth; for example, double strengthening of the southwestern monsoon in summer can lead to the thickening of SCML by 46%, the intensity decreasing by 30%, and the shoaling by 6%. This is because part of nutrients are pumped from the upper nutricline to the surface mixed layer by strong vertical mixing. Increasing initial nutrient concentrations by two times will increase the intensity of SCML by over 80% in winter and spring. The sensitivity analysis indicates that light attenuation is critical to the three parameters of SCM. Decreasing background light attenuation by 20% extends the euphotic zone, makes SCML deeper(~20%) and thicker(12% – 41%), and increases the intensity by over 16%. Overall, the depth of SCML is mainly controlled by light attenuation, and the SCML thickness and intensity are closely associated with wind and initial nitrate concentration in the SCS.  相似文献   

15.
1 Introduction TheMadden JulianOscillation (MJO)isastrongatmosphericconvection phenomenonoccurringovertheEasternIndianOceanandtheTropicalWesternPacific,usuallyinregionswithseasurfacetempera tures (SSTs)over 2 9℃ .Theeastwardmovingofalarge scalecirculat…  相似文献   

16.
A high-resolution Arctic Ocean-Finite Volume Community Ocean Model(AO-FVCOM) and observational current data from 14 mooring stations in Bering Strait and surrounding regions between 1990 and 2015 were used to study the seasonal and interannual variability of Bering Strait throughflow(BST). AO-FVCOM represented the BST with a climatological northward flux of 1.06 Sv, which was close to the observational mean of 0.94 ? 0.26 Sv. From the model results, the strongest volume flux was in summer, approximately 45% larger than that in winter. Interannual variability of BST was also indicated in the model results, and the maximum and minimum annual mean transports are in 2007 and 2012, respectively. AO-FVCOM showed larger differences from the observations in 2000, 2002, and 2015 than in other years, which may be related to the limitation of atmospheric forcing for the model. According to the driving mechanisms of BST, sea level difference(SLD) across the strait dominates the northward volume transport, and local wind is also important in forcing the seasonal variability of the BST and SLD patterns to change the BST indirectly.  相似文献   

17.
The linkage between physical and biological processes is studied by applying a one-dimensional physical-biological coupled model to the Sargasso Sea. The physical model is the Princeton Ocean Model and the biological model is a five-component system including phytoplankton, zooplankton, nitrate, ammonium, and detritus. The coupling between the physical and biological model is accomplished through vertical mixing which is parameterized by the level 2.5 Mellor and Yamada turbulence closure scheme. The coupled model investigates the annual cycle of ecosystem production and the response to external forcing, such as heat flux, wind stress, and surface salinity, and the relative importance of physical processes in affecting the ecosystem. Sensitivity experiments are also carried out, which provide information on how the model bio-chemical parameters affect the biological system. The computed seasonal cycles compare reasonably well with the observations of the Bermuda Atlantic Time-series Study (BATS). The spring bloom of phytoplankton occurs in March and April, right after the weakening of the winter mixing and before the establishment of the summer stratification. The bloom of zooplankton occurs about two weeks after the bloom of phytoplankton. The sensitivity experiments show that zooplankton is more sensitive to the variations of biochemical parameters than phytoplankton.  相似文献   

18.
Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs.Different forcing fields from 2080-2099 Special Report on Emissions Scenarios(SRES) B1,A1,and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System(ROMS).Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation,the Kuroshio Current in the East China Sea(ECS) is possibly strengthened under the global warming scheme.This mostly relates to local wind change,whereby the summer monsoon is strengthened and winter monsoon weakened.Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result.Downscaling 100 years’ temperature increments are comparable to the CCSM3,with a minimum in B1 scenario of 1.2-2.0°C and a maximum in A2 scenario of 2.5-4.5°C.More detailed temperature distributions are shown in the downscaling simulation.Larger increments are in the Bohai Sea and middle Yellow Sea,and smaller increments near the southeast coast of China,west coast of Korea,and southern ECS.There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer,and along the southern part of the Yellow Sea warm current in winter.There is enhancement of advective heat in the northern Yellow Sea in winter,related to the delicate temperature increment distribution.At 50 meter depth,the Yellow Sea cold water mass is destroyed.Our simulations suggest that in the formation season of the cold water mass,regional temperature is higher in the future and the water remains at the bottom until next summer.In summer,the mixed layer is deeper,making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.  相似文献   

19.
1 INTRODUCTIONThe South China Sea (SCS) is a semi-enclosedmarginal sea in western North Pacific Ocean withvery complex topography and is the important pas-sage connecting the Pacific and Indian Oceans. Ithas great impact to the global climate and a greatinterest of many oceanography researchers. Twodominant surface hydrographic and circulation fea-tures in the northern SCS are a strong fresh waterexpansion and a warm and high-salinity seawaterintrusion such as the SCS Diluted Water…  相似文献   

20.
The authors studied variations of temperature and salinity in seawater under sea ice using hydrologic data collected from polynyas south of the St. Lawrence Island during March of 2008 and 2009. The results indicate that the high-salinity water found during the cruises of 2008 and 2009 was due to the formation of polynyas. The salinity observed in 2008 was higher than that in 2009 as a result of higher salt production in 2008. The spatial distributions of high-salinity cores differed between the two cruises. In March 2008, a southeastward flow was formed under the persistent northerly wind in the observation region, which transported the high-salinity water produced by the polynyas to the southeast. The similar flow, however, did not exist in March 2009 because the northerly wind over the study area was interrupted by a southerly wind. Accordingly, the polynyas and the high-salinity water produced by them existed for a short time. As a result, the high-salinity water in 2009 did not spread very far, and stayed within the polynyas. In addition, during the 2009 cruise, two stages of observations in the polynyas showed the core of high-salinity water was shifted to the southwest of the St. Lawrence Island. This result suggested that a southwestward flow might have existed in the area at the onset of the northerly wind, which was consistent with the alongshore and/or offshore flows caused by the northerly wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号