首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Forecasting of a nonlinear cascade was developed for modeling watershed runoff, and was tested by computing the direct runoff hydrograph for two rainfall-runoff events on a small watershed in China. The forecasting model was superior to Dings variable unit hydrograph method and the method of limited differences for these two events.  相似文献   

2.
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau.  相似文献   

3.
Land use changes such as deforestation,increase in cropping or grazing areas and built-up land, likely modify the water balance and land surface behavior in the Himalayan watersheds.An integrated approach of hydrological and hydraulic modeling was adopted for comparative analysis of hydrological pattern in three Himalayan watersheds i.e.Khanpur,Rawal and Simly situated in the Northern territory of Pakistan.The rainfall-runoff model SWAT- Soil and water assessment tool and Hydro CAD were calibrated for the selected watersheds.The correlation analysis of the precipitation data of two climate stations i.e.Murree and Islamabad, with the discharge data of three rivers was utilized to select best suitable input precipitation data for Hydro CAD rainfall-runoff modeling.The peak flood hydrograph were generated using Hydro CAD runoff to optimize the basin parameters like CN, runoff volume, peak flows of the three watersheds.The hydrological response of the Rawal watershed was studied as a case study to different scenarios of land use change using SWAT model.The scenario of high deforestation indicated a decline of about 6.3% in the groundwater recharge tostream while increase of 7.1% in the surface runoff has been observed under the scenario of growth in urbanization in the recent decades.The integrated modeling approach proved helpful in investigating the hydrological behavior under changing environment at watershed level in the Himalayan region.  相似文献   

4.
Floods are one of the most common natural hazards occurring all around the world. However, the knowledge of the origins of a food and its possible magnitude in a given region remains unclear yet. This lack of understanding is particularly acute in mountainous regions with large degrees in Sichuan Province, China, where runoff is seldom measured. The nature of streamflow in a region is related to the time and spatial distribution of rainfall quantity and watershed geomorphology. The geomorphologic characteristics are the channel network and surrounding landscape which transform the rainfall input into an output hydrograph at the outlet of the watershed. With the given geomorphologic properties of the watershed, theoretically the hydrological response function can be determined hydraulically without using any recorded data of past rainfall or runoff events. In this study, a kinematic-wave-based geomorphologic instantaneous unit hydrograph (KW-GIUH) model was adopted and verified to estimate runoff in ungauged areas. Two mountain watersheds, the Yingjing River watershed and Tianquan River watershed in Sichuan were selected as study sites. The geomorphologic factors of the two watersheds were obtained by using a digital elevation model (DEM) based on the topographic database obtained from the Shuttle Radar Topography Mission of US’s NASA. The tests of the model on the two watersheds were performed both at gauged and ungauged sites. Comparison between the simulated and observed hydrographs for a number of rainstorms at the gauged sites indicated the potential of the KW-GIUH model as a useful tool for runoff analysis in these regions. Moreover, to simulate possible concentrated rainstorms that could result in serious flooding in these areas, synthetic rainfall hyetographs were adopted as input to the KW-GIUH model to obtain the flow hydrographs at two ungauged sites for different return period conditions. Hydroeconomic analysis can be performed in the future to select the optimum design return period for determining the flood control work.  相似文献   

5.
对河道汇流过程进行模拟可为洪水灾害预警预报提供参考。利用水力水文学方法能很好地模拟河道汇流过程,但需要输入的参数多,运算过程复杂,对数据精度要求高,而且在无资料区流域无法确定河道上断面流量情况下,该方法具有一定局限性。本文将元胞自动机模型与水文模型相结合,构建了河道汇流过程中的元胞自动机模型和产流汇流规则。通过建立河道坡面拓扑关系,利用SCS-CN(Soil Conservation Service-Curve Number)模型逐个计算河道元胞上的坡面入流,并利用曼宁方程模拟河道汇流过程,最后在ArcEngine平台下进行二次开发,实现了河道汇流可视化。本文以厦门市茂林溪流域为研究区,对1997年5月6日至7日的一场降雨进行了模拟。将本文模拟结果与该流域其他学者的研究进行了对比分析,结果表明在输入数据与水文模型参数相同的情况下,本文不仅模拟出每次降雨间隔产生的较小洪峰,并且整场降雨产生的最大洪峰流量精度与时间精度均提高了5倍,可以更准确地模拟河道汇流过程,适用于河道汇流可视化,该模拟可以为洪水灾害预警预报提供一定参考。  相似文献   

6.
The aim of this study was to assess the runoff amount from a catchment characterized by diverse land uses by using the Soil Conservation Service Curve Number(SCS-CN) method based on Curve Number(CN) defined for dominant homogeneous elementary sub-regions.The calculations employed the SCS-CN method,involving the division of the catchment in two homogeneous parts and determining the runoff amount.The obtained results were compared with the results provided by three other CN determination methods,i.e.the Hawkins function,the kinetics equation,and a complementary error function peak.The catchment is located in a mountain dominated by forest land cover.Empirical CN-Precipitation(CN_(emp)-P) data pairs were analyzed using the mentioned methods,and the highest quality score was achieved from model 1.The results suggest that dividing a catchment into two homogeneous areas and determining their separate CN parameters,used later on to calculate the runoff by means of the presented approach,could be an alternative to the standard methods.The described method is relatively easy,and as it does not require an adoption of numerous parameters,and it can be employed for designing hydraulic facilities.  相似文献   

7.
由于高空间分辨率遥感影像自身的复杂性,传统的分水岭分割方法难以取得令人满意的效果。本文提出一种改进分水岭变换的高分辨率遥感影像多尺度分割方法,在抑制分水岭过分割现象的同时,还能实现对遥感影像的多尺度分割。该方法充分考虑了高分辨率遥感影像的多光谱和多尺度特性,首先,利用各向异性扩散滤波技术对影像进行平滑滤波,目的是在滤除各种噪声的同时还能保持影像的边缘特征和重要的细节信息;然后,提取影像的多尺度形态学梯度,并从梯度图像中提取标记;接着进行基于标记的分水岭变换;最后,利用改进的快速区域合并算法实现对影像的多尺度分割。实验表明,改进的算法能有效地抑制分水岭的过分割现象,对高分辨率遥感影像有较好的分割性能。  相似文献   

8.
In the mid-eastern China,there are few or no lakes which are in the absence of anthropogenic disturbances,or their sediments remain undisturbed.As a result,the reference lakes distribution and paleolimnological reconstruction approaches usually are inappropriate to estimate lake reference conditions for nutrients.This yields the necessity of using the extrapolation methods to estimate the lake reference conditions for nutrients within those regions.The lake reference conditions for nutrients could be inferred inversely from the law of mass conservation,current lake nutrient concentration,and the loadings from watershed.Considering the scarcity of hydrological and water quality data associated with lakes and watersheds in China,as well as the low requirement of the watershed nutrient loadings models for these data,the soil conservation service(SCS) distributed hydrological model and the universal soil loss equation(USLE) were applied.The SCS model simulates the runoff process of the watershed,thereby calculating dissolved nutrients annually.The USLE estimates the soil erosion and particulate nutrients annually in a watershed.Then,with the loadings from atmospheric deposition and point source,the previous annual average nutrient concentrations could be acquired given the current nutrient concentrations in a lake.Therefore,the nutrient reference conditions minimally impacted by human activities could be estimated.Based on the proposed model,the reference conditions for total nitrogen and total phosphorus of Chaohu Lake,Anhui Province,China are 0.031 mg/L and 0.640 mg/L,respectively.The proposed reference conditions estimation model is of clear physical concept,and less data required.Thus,the proposed approach can be used in other lakes with similar circumstances.  相似文献   

9.
The relation between runoff and sediment and land cover is investigated in the Cedar Creek Watershed (CCW), located in Northeastern Indiana, United States. The major land cover types in this watershed are cultivated land, woodland and pasture /Conservation Reserve Program (CRP), which account for approximate 90 % of the total area in the region. Moreover, land use was changed tremendously from aooo to 9004, even without regarding the effect of the crop rotation system (corn & soybean). At least 49 % of land cover types were changed into other types in this period. The land cover types, ranking by changing area from high to low series, are rye, soybean, corn, woodland and pasture/CRP. The CCW is divided into 21 subwatersheds, and soil and water loss in each sub-watershed is computed by using Soil and Water Assessment Tool (SWAT). The results indicate that the variations in runoff and sediment have positive relation to the area of crops (especially corn and soybean); sediment is more sensitive to land cover changes than runoff; more heavy rainfall does not always mean more runoff because the combination of different land cover types always modify runoff coefficient; and rye, soybean and corn are the key land cover types, which affected the variation in runoff and sediment in the CCW.  相似文献   

10.
Suspended sediment transport in streams is an effective indicator of soil erosion at the watershed scale. This process was studied using the data obtained from two continuous monitoring stations installed in Italian watersheds, the Rio Cordon and Torrente Carapelle. The catchments have substantially different climatic, morphological and land use characteristics. The Rio Cordon, a small Alpine watershed, has been monitored since 1986, while in the Torrente Carapelle, a medium-size Mediterranean watershed, the monitoring station has provided data since 2007. Several flood events with suspended sediment transport were isolated in the two catchments, excluding those determined by snowmelt in the Rio Cordon as this process does not affect the Carapelle watershed. Analysis of the events showed different behavior in terms of hysteresis loop trends between water discharge (m3 s-1) and suspended sediment concentration (g l-1) values, as the Rio Cordon confirms clockwise relationships most frequently, while counter-clockwise trends represent the majority of cases for the Carapelle Torrent. The different behavior of the two watersheds was further analyzed by evaluating relationships between the main hydrological parameters related to suspended sediment transport. Runoff controls the total sediment budget in both catchments. In contrast, it was noted that the runoff process does not interfere in the magnitude of the suspended sediment transport in the Rio Cordon catchment, while variations due to the larger size of the catchment area characterize the events in the Carapelle watershed. Lastly, a flow peak threshold that determines the advance or delay of the hydrograph peak with respect to the sedigraph peak was established for the Carapelle Torrent, while it was not reported in the Rio Cordon.  相似文献   

11.
A model to derive direct runoff hydrograph for an ungauged basin using the physical properties of the basin is presented. The basin is divided into grid cells and canal elements. Overland flow is generated from each grid cell of the basin by application of continuous effective rainfall of 1 mm/hr to the basin. The flow generated is routed through downstream grid cells and the canal elements using the kinematic wave approach. The travel time for direct runoff from each grid cell to the basin outlet is calculated and the S-curve is derived for the basin. The S-curve is used to derive the unit hydrograph of a given duration for the basin. The model, referred as Cell-basin model was applied to the Upper Kotmale Basin in Sri Lanka and the model predictions of direct runoff hydrographs for rainfall events agreed with the observations to a reasonable accuracy. Comparison of the unit hydrographs obtained from the model and from the conventional Snyder’s synthetic unit hydrograph using regionalized parameters assuming the basin as an ungauged basin, with the unit hydrograph derived from the observations showed that the model predicted unit hydrograph was more suitable than that obtained by Snyder’s method for Sri Lankan up country basins. Thus, the present model is a useful tool to obtain direct runoff hydrograph for ungauged basins.  相似文献   

12.
径流节点是一种真实存在于流域单元中的地学实体对象,携带了大量的水文与地貌特征信息。针对当前研究中缺乏定量地度量径流节点所承载的地学特征信息量的相关探讨,本文结合径流节点的已有理论,总结了其地学特征信息,借鉴数学粗集理论提出了径流节点的特征信息指数(FIIRN),并分析了相关的定义与计算方法。本文以黄土高原的7个典型黄土地貌样区5 m分辨率DEM数据为实验材料,提取了各个实验样区的径流节点,并计算了每个样区的FIIRN指数值。实验结果表明:(1)FIIRN指数可有效地映射流域单元的径流分级、发育状况等地学特征信息;(2)FIIRN指数可定量地表达流域单元的地学特征信息量;(3)FIIRN指数可作为挖掘流域地学特征信息的一个重要参数。  相似文献   

13.
国内流域产汇流模型与应用分析   总被引:1,自引:0,他引:1  
本文对国内流域产汇流研究与应用进行了分析、比较和综述。重点是对流域产流模型结构建立的理论基础分析,流域汇流的单位线方法和流域的实际物理特性和水流运动的内部机制之间的对应关系的分析。流域产汇流模型和遥感技术相结合应用到具体工程实践所产生的新的理论技术和研究方向作了分析。最后应用系统论、控制论和反问题对上述问题进行了系统的归纳和总结。  相似文献   

14.
The upper Huanghe(Yellow) River basin is situated in the northeast of the Qinghai-Xizang(Tibet)Plateau of China.The melt-water from the snow-cover is main water supply for the rivers in the region during springtime and other arid regions of the northwestern China, and the hydrological conditions of the rivers are directly controlled by the snowmelt water in spring .So snowmelt runoff forecast has importance for hydropower,flood prevention and water resources utilize-tion.The application of remote sensing and Geographic Information System(GIS) techniques in snow cover monitoring and snowmelt runoff calculation in the upper Huanghe River basin are introduced amply in this paper.The key parame-ter-snow cover area can be computed by satellite images from multi-platform,multi-templral and multi-spectral.A clus-ter of snow-cover data can be yielded by means of the classification filter method.Meanwhile GIS will provide relevant information for obtaining the parameters and also for zoning .According to the typical samples extracting snow covered moun-tained in detail also.The runoff snowmelt models based on the snow-cover data from NOAA images and observation data of runoff,precipitation and air temperature have been satisfactorily used for predicting the inflow to the Longyangxia Reser-voir,which is located at lower end of snow cover region and is one of the largest reservoirs on the upper Huanghe River, during late March to early June.The result shows that remote sensing techniques combined with the ground meteorological and hydrological observation is of great potential in snowmelt runoff forecasting for a large river basin.With the develop-ment of remote sensing technique and the progress of the interpretation method,the forecast accuracy of snowmelt runoff will be improved in the near future .Large scale extent and few stations are two objective reality situations in Chian,so they should be considered in simulation and forecast.Apart from dividing ,the derivation of snow cover area from satellite images would decide the results of calculating runoff.Field investigation for selection of the learning samples of different snow patterns is basis for the classification.  相似文献   

15.
All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.  相似文献   

16.
崾岘是将要被切穿的鞍部,是正负地形矛盾斗争的结果,也是重要的地形控制点。典型的崾岘多位于黄土高原黄土地貌区,又称黄土崾岘,其对识别沟间地与沟谷的斗争程度有一定的指示作用。本文以黄土高原样区为例,基于1:1万DEM(5 m分辨率)和影像分辨率为0.95 m的遥感影像,利用流域边界算法和缓冲区标定,分析窗口选择5×5,实现了崾岘点位的半自动化提取。并对各崾岘点位求取坡度等地形因子,总结崾岘的空间格局和地形特征。结果显示,崾岘多分布在主流域边界和垂直于主沟道的最宽部分,地形控制作用明显。崾岘的坡度、起伏度、切割深度等值均大于鞍部值,同时,高级流域区的崾岘值大于低级流域区的崾岘值,反映出崾岘具有侵蚀程度强、表层完整性低、地表破碎度高的特点。总体而言,崾岘受沟道蚕食度高,从侧面反映了黄土地貌的发育阶段,是黄土地貌发育到中期的标志性产物。  相似文献   

17.
青藏高原作为地球第三极增温明显,相关研究多集中于青藏高原冰雪动态,很少关注冰雪消融后岩漠的变化。岩漠通过地气相互作用影响着全球气候变化的区域差异。本文通过梳理青藏高原冰雪、冰雪消融区、岩漠动态变化遥感监测方法体系,着重分析了各遥感数据来源及提取方法的优缺点和适用性,并对基于遥感技术条件下青藏高原冰雪动态监测、冰雪消融区岩漠动态变化监测的数据来源、研究方法与技术进行了总结。目前,青藏高原冰雪动态变化遥感监测数据来源多样、研究方法成熟,而冰雪消融区岩漠动态变化遥感监测尚未形成系统研究。在人为干扰不明显背景下,青藏高原冰雪消融区岩漠的动态变化,在一定程度上也可作为对冰雪变化遥感监测的补充。  相似文献   

18.
吴柯  杨帆  徐莹 《地质科技通报》2022,41(5):181-189
近年来, 受人类活动和全球变暖的双重影响, 我国南海区域珊瑚礁生态系统退化, 发生白化现象。利用遥感技术监测和掌握珊瑚礁的白化情况, 对南海生态环境的保护和治理具有重大价值。首先通过多期海表温度数据获取珊瑚礁白化预警的区域, 选定西沙群岛永乐环礁中的羚羊礁作为研究对象; 然后, 提出了一种新型的珊瑚礁白化监测模型, 分别采取水深校正、珊瑚礁分类、反射率调整以及阈值选择等方式对2013-2018年的Landsat-8遥感影像开展了多时间序列的珊瑚礁白化监测研究。最终的结果显示, 该模型能够较为准确地获取珊瑚礁白化区域, 为南海珊瑚礁白化现象的长时间序列监测提供依据。   相似文献   

19.
混合像元作为遥感信息的不确定性,一直是定量遥感科学研究的核心领域之一,干旱区由于下垫面均匀、气象条件单一等先天条件,已成为定量遥感产品真实性检验的理想场所。本文以塔里木盆地北缘的库车河绿洲为研究区,首先,针对不同地物类型分别采用不同方法进行地物端元提取;然后,以端元均方根EAR(Endmember Aver-age RMSE,EAR)和最小平均波谱角(Minimum Average Spectral Angle,MASA)值来选取最优端元;最后,用多端元光谱混合分析(Multiple Endmember Spectral Mixture Analysis,MESMA)模型进行光谱混合分解,并对结果作了精度评价与比较分析。结果表明:MESMA模型能有效提高像元内基本组分丰度信息精度,从而为典型地物高精度提取提供了科学方法。  相似文献   

20.
基于RS和GIS的松花江流域植被覆盖动态变化研究   总被引:1,自引:0,他引:1  
利用遥感和地理信息系统技术对1989,1995年的Landsat TM数据和2002年Landsat ETM+三期遥感数据进行处理,反演和计算松花江流域的归一化植被指数(NDVI),在此基础上,获取研究区域植被覆盖度。在ArcGIS9.2软件空间分析模块的支持下,对研究区域三期植被覆盖影像进行叠加分析,以流域尺度和栅格尺度分析植被覆盖变化的时间和空间特性,获取研究区域植被覆盖度空间格局分布特征,为该区域植被覆盖度的自动化监测提供很好的技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号