首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the multi-wave and multi-component seismic exploration,shear-wave will be split into fast wave and slow wave,when it propagates in anisotropic media. Then the authors can predict polarization direction and density of crack and detect the development status of cracks underground according to shear-wave splitting phenomenon. The technology plays an important role and shows great potential in crack reservoir detection. In this study,the improved particle swarm optimization algorithm based on shrinkage factor is combined with the Pearson correlation coefficient method to obtain the fracture azimuth angle and density. The experimental results show that the modified method can improve the convergence rate,accuracy,anti-noise performance and computational efficiency.  相似文献   

2.
With the increasing complexity of prospecting objectives,reverse time migration (RTM)has attracted more and more attention due to its outstanding imaging quality.RTMis based on two-way wave equation,so it can avoid the limits of angle in traditional one-way wave equation migration,image reverse branch,prism waves and multi-reflected wave precisely and obtain accurate dynamic information.However,the huge demands for storage and computation as well as low frequency noises restrict its wide application.The normalized cross-correlation ima-ging conditions based on wave field decomposition are derived from traditional cross-correlation imaging condition, and it can eliminate the low-frequency noises effectively and improve the imaging resolution.The practical proce-dure includes separating source and receiver wave field into one-way components respectively,and conducting cross-correlation imaging condition to the post-separated wave field.In this way,the resolution and precision of the imaging result will be promoted greatly.  相似文献   

3.
This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient. In this method, the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term, the surface current and the bottom friction coefficient are defined as the analytical variables, and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient. This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves. Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information. The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments. The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.  相似文献   

4.
采用黑龙江数字地震台网2012-01~2014-07间23个宽频带地震台站记录的远震SKS波形资料,利用Splitlab 软件对黑龙江地区进行剪切波分裂的分析研究,使用最小能量法、旋转相关法和最小特征值法计算所有观测台站的SKS快波偏振方向和快、慢波的延迟时间,最终得到黑龙江省上地幔各向异性图像。结果显示,黑龙江地区上地幔地震各向异性比较明显,快波偏振方向与主张应力方向基本一致,与GPS得出的速度场方向相符,说明该地区的壳幔耦合可能存在垂直连贯性。  相似文献   

5.
BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural network and BP neural network optimized with PSO into the inversion of 3D density interface respectively,and a comparison was drawn to demonstrate the inversion results. To start with,a synthetic density interface model was created and we used the proceeding inversion methods to test their effectiveness. And then two methods were applied into the inversion of the depth of Moho interface. According to the results,it is clear to find that the application effect of PSO-BP is better than that of BP network. The BP network structures used in both synthetic and field data are consistent in order to obtain preferable inversion results. The applications in synthetic and field tests demonstrate that PSO-BP is a fast and effective method in the inversion of 3D density interface and the optimization effect is evident compared with BP neural network merely,and thus,this method has practical value.  相似文献   

6.
利用意大利2个台站记录的2004-12-26苏门答腊MW9.0大地震激发的面波分析准勒夫(Quasi-Love)波,同时尝试使用标准时频变换(NTFT)方法探测Quasi-Love波,结果发现,根据NTFT中频率随时间的变化可探测Quasi-Love波。另外,基于NTFT的时频谱提出估计信号相关性的相似度法,仿真实验表明,与经典的互相关法相比,相似度法具有很强的抗噪声能力,能够在极低的信噪比下估计信号的相关性。  相似文献   

7.
Reverse Time Migration(RTM) is a high precision imaging method of seismic wavefield at present,but low-frequency noises severely affect its imaging results.Thus one of most important aspect of RTM is to select the proper noise suppression method.The wavefield characteristics of the Poynting vector are analyzed and the upgoing,downgoing,leftgoing and rightgoing waves are decomposed using the Poynting vector of the acoustic wave equation.The normalized wavefield decomposition cross-correlation imaging condition is used to suppress low-frequency noises in RTM and improve the imaging precision.Numerical experiments using the Mamousi velocity model are performed and the results demonstrate that the upgoing,downgoing,leftgoing and rightgoing waves are well decomposed using the Poynting vector.Compared with the normalized cross-correlation imaging and Laplacian filtering method,the results indicate that the low-frequency noises are well suppressed by using the normalized wavefield decomposition cross-correlation imaging condition.  相似文献   

8.
采用固定台站法计算了三峡水库蓄水后湖北省巴东地区ML2.0以上地震的波速比值,并给出了各自的相关系数。结果显示,巴东地区地震波速比值变化与水库地震的震源浅,裂隙发育,水的渗入作用等有关,并存在扩容期间波速比降低,震前波速比回升的现象。  相似文献   

9.
广州城市暴雨内涝时空演变及建设用地扩张的影响   总被引:2,自引:0,他引:2  
暴雨内涝是城市常见的“城市病”。本研究通过收集20世纪80年代、90年代,以及2000年之后广州市主城区严重暴雨内涝资料,探索改革开放后广州市暴雨内涝时空演变特征,分析城市建设用地扩张对暴雨内涝的影响。结果表明,20世纪80年代至今,广州市主城区暴雨内涝点在时间和空间2个尺度上有显著的变化。早期内涝点主要集中于市中心的越秀区,随着城市化进程的推进逐渐在白云、天河等城市化较快的区域出现。从1990-2010年,广州市城乡建设用地扩张显著,城市不透水面密度与暴雨内涝点核密度呈正相关。其相关性随城市化发展逐渐增强,表明改革开放后广州市城市的快速扩张,对主城区暴雨内涝点的时空演变有较大的影响。因此,城市暴雨内涝的防治应重视城市不透水面格局的优化和调整。  相似文献   

10.
经典的Vensim模型采用2个平行线性水箱来模拟岩溶水文系统中的慢速流和快速流, 很难模拟岩溶水文系统内的非线性水文过程。提出一种改进的R-Vensim模型, 将Vensim中的一个水箱改为非线性水箱, 同时进一步考虑不同水文条件下降雨分配系数的变化, 用于模拟岩溶含水层中存在的非线性水文过程。2个模型被用于模拟丫吉试验场的S31岩溶泉, 模拟结果表明R-Vensim能更好地模拟不同降雨条件下岩溶泉水文动态过程, 而Vensim总是低估暴雨下的流量峰值和高估低强度降雨下的流量峰值。研究区岩溶水文系统中慢速流呈现强烈的非线性, 而快速流更接近于线性过程, 2个模拟时段内78.5%和68.4%的泉流量来源于非线性水箱。研究结果表明模型中考虑非线性水文过程对于岩溶泉流量尤其低流量过程的精准模拟十分重要。   相似文献   

11.
复杂岩性油藏作为目前油田开发中十分重要的油藏类型之一,其精细描述一直受到研究者的关注和重视。为了给有效开发和调整部署提供依据,系统梳理了目前复杂岩性油藏精细描述中存在的主要问题、主要研究内容和技术发展方向,并总结复杂岩性油藏研究进展。从国内复杂岩性油藏精细描述研究现状入手,总结了该项研究存在的6项主要问题,主要包括岩性岩相识别与分类、储层地质成因分析难度大、地层精细划分与对比具有特殊性、裂缝表征难度很大、测井精细二次解释精度低、地质建模井间储层预测准确率低等。基于文献调研和综述,结合科研实践,认为复杂岩性油藏精细描述核心内容包括岩性岩相识别与分类、储层地质成因机制分析、储集空间识别和描述、储层物性精细测井解释和储层地质建模等5个方面。在此基础上,指出了该项研究的发展趋势,主要包括地层精细划分与对比、微观孔隙结构表征、储层裂缝表征、储层综合定量评价和流体识别等。  相似文献   

12.
The presence of horizontal fractures enhances seismic anisotropy of shales.Calculation based on the effective medium theory indicates that horizontal fractures have little effects on velocities along the direction pa-rallel to fractures,but can significantly reduce velocities along the direction normal to fractures.Seismic respon-ses of shales with horizontal fractures are calculated based on the reflector model and the anisotropic propagator matrix method,in which the reflections are a combination of the contrast in impedance due to the variations in fracture density,anisotropic propagation of waves within the shales,and the tuning and interferences associated with layer thickness.Calculated results indicate that seismic reflections are sensitive to reservoir layer thickness and fracture density.Anisotropic propagation alters amplitudes and phases of reflections.It corresponds to high-er reflection amplitudes for the case of surrounding sandstone with higher velocity because the increase in frac-ture density increases the contrast in impedance between the shale and sandstone.In contrast,the surrounding sandstone with lower velocity corresponds to lower reflection amplitudes for the increase in fracture density.  相似文献   

13.
针对传统海浪建模方法中存在海洋表面真实感差、计算复杂的问题,本文进行了基于光滑粒子流体动力学算法(SPH)与移动立方体算法(MC)相结合的海浪建模仿真研究。通过基于空间网格的粒子分配,建立了粒子群单向列表存储结构,在海浪粒子物理量计算时,实现了其光滑核半径内粒子群的快速检索,并基于拉格朗日流体控制方程,进行了海浪粒子受力分析及状态计算;在模拟海浪与环境障碍物碰撞时,将碰撞问题简化为粒子在一定时间段内所经过的路径与障碍物表面三角面片是否相交来进行判定,并假设粒子为理想刚体,采用改进的欧拉方法实现了粒子新位置的动态计算;为增强海浪流体模拟的真实感,在移动立方体节点密度动态计算基础上,依据确定的海浪表面密度阈值,耦合MC算法进行了海浪表面的动态提取,从而实现了海浪三维表面建模与动态演变仿真。通过模拟验证了该算法的时效性与可行性,可为海洋环境信息三维可视化提供一定的参考。  相似文献   

14.
A method to retrieve ocean wave spectra from SAR images, named Parameterized First-guess Spectrum Method (PFSM), was proposed after interpretation of the theory to ocean wave imaging and analysis of the drawbacks of the retrieving model generally used. In this method, with additional information and satellite parameters, the separating wave-number is first calculated to determine the maximum wave-number beyond which the linear relation can be used. The separating wave-number can be calculated using the additional information on wind velocity and parameters of SAR satellite. And then the SAR spectrum can be divided into SAR spectrum of wind wave and of swell according to the result of separating wave-number. The portion of SAR spectrum generated by wind wave, is used to search for the most suitable parameters of ocean wind wave spectrum, including propagation direction of ocean wave, phase speed of dominating wave and the angle spreading coefficient. The swell spectrum is acquired by directly inversing the linear relation of ocean wave spectrum to SAR spectrum given the portion of SAR spectrum generated by swell. We used the proposed method to retrieve the ocean wave spectrum from ERS-SAR data from the South China Sea and compared the result with altimeter data. The agreement indicates that the PFSM is reliable.  相似文献   

15.
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37°27.6′ N, 122°15.1′ E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (ν=0.3−0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.  相似文献   

16.
本文在基本气流具有水平切变的情况下,利用摄动法导出了非线性Rossby波所满足的三阶Zakharov方程,然后,考虑了基流具有弱切变的情况,通过使用三阶Zakharov方程研究了Rossby波列的第一类不稳定性问题。结果表明:通过非线性作用,大气中的Rossby波列可产生调制不稳定。同时,本文对这种不稳定的区域,增长率和周期进行了详细的计算,并讨论了波振幅、波数、纬度和基流切变对它们的影响,指出Rossby波列的调制不稳定可以激发30~60天的低频振荡。  相似文献   

17.
徐家围子断陷火山岩岩性种类多,岩性复杂,不同岩性岩石特征差异大,火山岩岩性、储层的地震预测难度大,亟待通过岩石物理的分析,有效指导火山岩储层地震预测。通过对13种弹性参数敏感性交会分析,首次利用密度和剪切模量将徐家围子断陷营城组复杂火山岩岩性划分为玄武岩类、安山岩类和流纹岩类3类,且同一岩类岩性都具有相同的储层参数特征,在区分岩性基础上,利用密度和纵波速度双参数可对3类岩性组的储层进行直接识别,为火山岩储层叠前反演预测技术提供理论基础。   相似文献   

18.
介绍了一种新的神经网络权值优化算法——粒子群优(Particle Swarm Optimization,PSO)算法,提出了用粒子群神经网络对非线性系统进行系统辨识的构思。仿真实验结果表明,粒子群算法具有比BP算法更强的非线性系统辨识能力和更好的泛化能力。  相似文献   

19.
珊溪水库地震波速比时空分布特征   总被引:2,自引:0,他引:2  
选取P波、S波到时差Δt≤14s的台站数据,使用多台和达法计算珊溪水库地震序列地震波速比,结合地震序列的时空分布特征和发震构造,分析序列的波速比时空分布特征。1)珊溪水库90%的地震波速比分布在1.66~1.75,波速比平均值为1.70;2)珊溪水库地震序列包含有多组地震活动,每组地震的波速比呈开始快速下降之后缓慢上升的变化,每两组地震之间的波速比呈现逐渐增大的趋势,其波速比的变化特征可以归纳为"下降-回升-发生一组地震";3)波速比的变化和震中位置的迁移有一定关系,地震迁移到新的位置时最初几次地震的波速比较大,随后波速比逐渐减小;4)波速比沿深度方向和双溪-焦溪垟断裂方向分布不均匀,位于水库淹没区的双溪-焦溪垟断裂西北段波速比较小,位于水库库岸的双溪-焦溪垟断裂东南段波速比在深度方向上的变化最复杂,存在两个高、低值相间的区域,4级以上地震均发生在这一段5~8km深度处的波速比高、低值过渡区域。  相似文献   

20.
Some approximate formulas, based on the internal- wave directional spectral model established by Schott and Willebrand (1973), of vertically standing wavemode eigenfunctions and a dispersion relation of internal waves in shallow seas are presented. An optimization method to estimate internal wave directional spectra is described and the confidence interval expression of the estimates is established. The GM spectral model of oceanic internal waves cannot be used in shallow seas (01 bers, 1983). Internal waves in shallow seas have two origins: oceanic (those generated in and propagating from the deep sea and ocean) and local (Phillips, 1977). As both reveal obvious propagation orientations, it is important to investigate the directional properties of the internal wave field. Though cross correlation function or cross-spectrum analyses can reveal the directional properties in some degree (Fang et al., 1984, and Fang, 1987), internal- wave directional spectrum analysis can further estimate the main propagation directions of wave components with different modenumbers and frequencies. So the latter is a more effective analysis tool. Because internal- wave directional spectrum analysis requires high quality data and long computer time, there are very few study reports so far on this subject. Among them. Schott and Willebrands' (1973) work is noteworthy. On the supposition, of linearization, they derived an internal- wave directional spectrum model. Internal-wave directional-spectra in shallow seas are investigated in the present study with their work as reference. Project supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号