首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to these variations is investigated. Composite anomalies of the GP index are produced for the summer and winter monsoons separately. These composites replicate the observed seasonal variations of the observed frequency and location of tropical cyclogenesis over the SCS. The degree of contribution by each factor in different regions is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. Over the northern SCS, potential intensity makes the largest contributions to the seasonal variations in tropical cyclogenesis. Over the southern SCS, the low-level relative vorticity plays the primary role in the seasonal modulation of tropical cyclone (TC) genesis frequency, and the vertical wind shear plays the secondary role. Thermodynamic factors play more important roles for the seasonal variations in tropical cyclogenesis over the northern SCS, while dynamic factors are more important in the seasonal modulation of TC genesis frequency over the southern SCS.  相似文献   

2.
The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May. The two peaks correspond to the withdrawal and onset of the BoB summer monsoon, respectively. The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency, indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency. Of the four environmental variables (i.e., low-level vorticity, mid-level relative humidity, potential intensity, and vertical wind shear) that enter into the GP index, the potential intensity makes the largest contribution to the bimodal distribution, followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal. The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humid-ity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet wester-lies) dominates the BoB in late spring (autumn).  相似文献   

3.
It is well known that Tropical cyclone(TC) activities over the Pacific are affected by El Nino events. In most studies El Nino phenomena have been separated into east Pacific warming(EPW) and central Pacific warming(CPW) based on the location of maximum SST anomaly. Since these two kinds of El Nino have different impacts on Pacific tropical cyclone activities, this study investigates different features of TC activities and the genesis potential index(GPI) during EPW years and CPW years. Four contrib- uting factors, i.e., the low-level absolute vorticity, the relative humidity, the potential intensity and the vertical wind shear, are exam- ined to determine which factors are most important in causing the anomalous TC activities. Our results show that during EPW years in July–August(JA0), TC activities are more frequent with stronger intensity over the Western North Pacific(WNP) and Eastern North Pacific(ENP). The maximum anomaly center of TC activities then drifts eastward significantly in September–October(SO0). However, centers of anomalous TC activity barely change from JA0 to SO0 during CPW years. In January–February–March(JFM1) of the decaying years of warming events, TC frequency and intensity both have positive anomaly over the South Pacific. The anoma- lies in EPW years have larger amplitude and wider spatial distribution than those in CPW years. These anomalous activities of TC are associated with GPI anomaly and the key factors affecting GPI anomaly for each ocean basin are quite different.  相似文献   

4.
To understand the impacts of large-scale circulation during the evolution of El Nino cycle on tropical cyclones(TC) is important and useful for TC forecast.Based on best-track data from the Joint Typhoon Warning Center and reanalysis data from National Centers for Environmental Prediction for the period 1975-2014,we investigated the influences of two types of El Nino,the eastern Pacific El Nino(EP-El Nino) and central Pacific El Nino(CP-E1 Nino),on global TC genesis.We also examined how various environmental factors contribute to these influences using a modified genesis potential index(MGPI).The composites reproduced for two types of El Nino,from their developing to decaying phases,were able to qualitatively replicate observed cyclogenesis in several basins except for the Arabian Sea.Certain factors of MGPI with more influence than others in various regions are identified.Over the western North Pacific,five variables were all important in the two El Nino types during developing summer(July-August-September) and fall(OctoberNovember-December),and decaying spring(April-May-June) and summer.In the eastern Pacific,vertical shear and relative vorticity are the crucial factors for the two types of El Nino during developing and decaying summers.In the Atlantic,vertical shear,potential intensity and relative humidity are important for the opposite variation of EP-and CP-E1 Ninos during decaying summers.In the Southern Hemisphere,the five variables have varying contributions to TC genesis variation during peak season(January-February-March) for the two types of El Nino.In the Bay of Bengal,relative vorticity,humidity and omega may be responsible for clearly reduced TC genesis during developing fall for the two types and slightly suppressed TC cyclogenesis during EP-El Nino decaying spring.In the Arabian Sea,the EP-El Nino generates a slightly positive anomaly of TC genesis during developing falls and decaying springs,but the MGPI failed to capture this variation.  相似文献   

5.
Yang  Yuxing  Yang  Lei  Wang  Faming 《中国海洋湖沼学报》2017,35(2):452-465

To understand the impacts of large-scale circulation during the evolution of El Niño cycle on tropical cyclones (TC) is important and useful for TC forecast. Based on best-track data from the Joint Typhoon Warning Center and reanalysis data from National Centers for Environmental Prediction for the period 1975–2014, we investigated the influences of two types of El Niño, the eastern Pacific El Niño (EP-El Niño) and central Pacific El Niño (CP-El Niño), on global TC genesis. We also examined how various environmental factors contribute to these influences using a modified genesis potential index (MGPI). The composites reproduced for two types of El Niño, from their developing to decaying phases, were able to qualitatively replicate observed cyclogenesis in several basins except for the Arabian Sea. Certain factors of MGPI with more influence than others in various regions are identified. Over the western North Pacific, five variables were all important in the two El Niño types during developing summer (July–August–September) and fall (October–November–December), and decaying spring (April–May–June) and summer. In the eastern Pacific, vertical shear and relative vorticity are the crucial factors for the two types of El Niño during developing and decaying summers. In the Atlantic, vertical shear, potential intensity and relative humidity are important for the opposite variation of EP- and CP-El Niños during decaying summers. In the Southern Hemisphere, the five variables have varying contributions to TC genesis variation during peak season (January–February–March) for the two types of El Niño. In the Bay of Bengal, relative vorticity, humidity and omega may be responsible for clearly reduced TC genesis during developing fall for the two types and slightly suppressed TC cyclogenesis during EP-El Niño decaying spring. In the Arabian Sea, the EP-El Niño generates a slightly positive anomaly of TC genesis during developing falls and decaying springs, but the MGPI failed to capture this variation.

  相似文献   

6.
Ocean surface winds observed by the Quick Scatterometer (QuikSCAT) satellite prior to the geneses of 36 tropical cy- clones (TCs) in the South China Sea (SCS) are investigated in this paper. The results show that there are areas with negative mean horizontal divergence around the TC genesis locations three days prior to TC formation. The divergence term [-(f ζ)( u/ x v/ y)] in the vorticity equation is calculated based upon the QuikSCAT ocean surface wind data. The calculated mean divergence term is about 10.3 times the mean relative vorticity increase rate around the TC genesis position one day prior to TC genesis, which shows the important contributions of the divergence term to the vorticity increase prior to TC formation. It is suggested that criteria related with the divergence and divergence term be applied in early detections of tropical cyclogenesis using the QuikSCAT satellite data.  相似文献   

7.
To investigate whether the Asian monsoon influences tropical cyclone (TC) activity over the South China Sea (SCS), TCs (including tropical storms and typhoons) over the SCS are analyzed using the Joint Typhoon Warning Center dataset from 1945 to 2009. Results show an increasing trend in the frequencies of TC-all (all TCs over the SCS) and TY-all (all typhoons over the SCS), due mainly to an increase in the number of TCs moving into the SCS after development elsewhere. Little change is seen in the number of TCs that form in the SCS. The results of wavelet analysis indicate that the frequency of typhoons (TY) shows a similar oscillation as that of TCs, i.e., a dominant periodicity of 8-16 years around the 1970s for all TC activity, except for TC-mov (TCs that moved into the SCS from the western North Pacific). To examine the relationship between typhoon activity and the summer monsoon, a correlation analysis was performed that considered typhoons, TCs, and five monsoon indexes. The analysis reveals statistically significant negative correlation between the strength of the Southwest Asian summer monsoon and typhoon activity over the SCS, which likely reflects the effect of the monsoon on TC formation in the western North Pacific (WNP) and subsequent movement into the SCS. There is a statistically significant negative correlation between TY-loc (typhoons that developed from TCs formed over the SCS) and the South China Sea summer monsoon and Southeast Asian summer monsoon.  相似文献   

8.
用Nino 3指数、印度洋单极指数、偶极子指数描述热带太平洋、印度洋海表温度 (SST)的年际异常 ,季节分析表明 :冬季Nino3区与热带印度洋海表温度距平 (SSTA)相互关系表现为单极 ,且 1976年以后两者的相互关系减弱 ,其可能原因 :一是冬季是ENSO(厄尔尼诺 )事件的盛期 ;二是冬季西太平洋暖水区东移 ,造成两洋的垂直纬向环流耦合减弱。夏季两者相互关系表现为偶极 ,1976年以后两者的相互关系加强 ,其可能原因 ,一是夏季是偶极子盛期 ,ENSO事件的发展期 ;二是夏季西太平洋暖水区虽然东移 ,但暖水区位置偏北 ,且东南印度洋的上升支强度增大 ,造成两洋的纬向环流耦合更强烈  相似文献   

9.
By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Nino-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Nino, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a ’Southern Flood and Northern Drought’ pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a ’Northern Flood and Southern Drought’ pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the ’Silk Road’ teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.  相似文献   

10.
AN ENSO-LIKE OSCILLATION SYSTEM   总被引:4,自引:0,他引:4  
INTRODUCTIONElNi no SouthernOscillation (ENSO)istheinterannualinteractionofocean atmosphereinthetropical (especiallyequatorial)Pacific,andisconsideredtobethedominantmechanismoftheearth’sinterannualclimatechange.ThereareseveralparadigmsproposedforinterpretingENSO .Bjerknes’ (1 966,1 969)pio neeringworkvisualizedacloseassociationbetweenoceanandatmosphereandexplainedhowthedis turbancecoulddevelopthroughtheocean atmosphereinteraction .Heproposedapositivefeedbackmechanism .ButENSOisan…  相似文献   

11.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   

12.
INTRODUCTIONTheSouthChinaSea(SCS)isapartly enclosedoceanbasinoverlaidbyapronouncedmonsoonsurfacewind .Paststudies (Chenetal.,1 991 ;DingandMurakami,1 994 ;Yan ,1 997;LiangBiqi,1 991 ;LiangJianyin ,1 991 )indicatethatahugewarmwaterpooljointlycontributedbythewesternPacific ,ea…  相似文献   

13.
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (IOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an El Niño (La Niña) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).  相似文献   

14.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

15.
A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.  相似文献   

16.
The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental Prediction-National Center for Atmospheric Research. It is found that there are two patterns of deep convection that occur at different locations and influence the summer monsoon onset over the SCS. One is over the Asia continent and the western Pacific corresponding to the southwesterly of summer monsoon prevailing over the northern and central part of the SCS, while the other is near the Philippines that affects the westerly summer monsoon as prevailing over the central and southern southern part of the SCS. Since these two kinds of convection affecting the summer monsoon onset do not always occur together, thus the summer monsoon onset time is different when determined by various indices.  相似文献   

17.
We analyzed the temporal and spatial variation, and interannual variability of the North Pacific meridional overturning circulation using an empirical orthogonal function method, and calculated mass transport using Simple Ocean Data Assimilation Data from 1958–2008. The meridional streamfunction field in the North Pacific tilts N-S; the Tropical Cell (TC), Subtropical Cell (STC), and Deep Tropical Cell (DTC) may be in phase on an annual time scale; the TC and the STC are out of phase on an interannual time scale, but the interannual variability of the DTC is complex. The TC and STC interannual variability is associated with ENSO (El Niño-Southern Oscillation). The TC northward, southward, upward, and downward transports all weaken in El Niños and strengthen in La Niñas. The STC northward and southward transports are out of phase, while the STC northward and downward transports are in phase. Sea-surface water that reaches the middle latitude and is subducted may not completely return to the tropics. The zonal wind anomalies over the central North Pacific, which control Ekman transport, and the east-west slope of the sea level may be major factors causing the TC northward and southward transport interannual variability and the STC northward and southward transports on the interannual time scale. The DTC northward and southward transports decrease during strong El Niños and increase during strong La Niñas. DTC upward and downward transports are not strongly correlated with the Niño-3 index and may not be completely controlled by ENSO.  相似文献   

18.
Based on the EOF analyses of Absolute Dynamic Topography satellite data,it is found that,in summer,the northern South China Sea(SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter.A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS.Numerical experiments show that the nonlinear term,the pressure torque and the planetary vorticity advection play important roles in the circulation of the northern SCS,whilst the contribution by seasonal wind stress curl is local and limited.Only a small part of the Kuroshio water intrudes into the SCS,it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait(LS) and a negative vorticity band along the 200 m isobath of the northern basin.The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS.Besides the Kuroshio intrusion and monsoon,the water transports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS,and the induced vorticity field in summer is almost contrary to that in winter.The strength variations of these three key factors(Kuroshio,monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS.As for the water exchange via the LS,the Kuroshio intrusion brings about a net inflow into the SCS,and the monsoon has a less effect,whilst the water transports via the Sunda Shelf and the Sibutu Passage are the most important influencing factors,thus,the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.  相似文献   

19.
Multi-year SST and NCEP/NCAR reanalyzed wind data were employed to study the impacts of El Nino on the Southeast Asian summer monsoon(SEASM),It was found that the impacts of El Nino on the SEASM differed distinctly from those on the East Asian Summer monsoon (EASM) and the Indian summer monsoon(ISM).Composite analysis indicated that the “gear point“of coupling between the Indo-mosoon circulation and the Pacific-Walker circulation was located in the western margins of Southeast Asia when the developing stage of El Nino events covered the boreal summer.The anomalous circulations in the lower and upper troposphere and divergent circulation are all favorable for the strengthening of the SEASM during this period.Following the evolution of El Nino,the “gear point“ of the two cells shifted eastward to the central Pacific when the mature or decaying period of El Nino events covered the boreal summer.The anomalous circulations are favorable for the weakening of the SEASM ,The anomalous indexes of intenstity of SEASM accord well with the above resultsl.Additionally,the difference of SSTA patterns in the tropical In-do-Pacific OCean between the two stages of the El Nino may play an important role.  相似文献   

20.
This study investigated the interannual wave climate variability in the Taiwan Strait(TS) and its relationship to the El Ni?o-Southern Oscillation(ENSO) phenomenon using a high-resolution numerical wave model. The results showed the interannual variability of significant wave height(SWH) in the TS, which exhibits significant spatial and seasonal variations, is typically weaker than the seasonal variability. The standard deviation of the interannual SWH anomaly(SWHA) showed similar spatial variations in the TS throughout the year, being largest in the middle of the strait and decreasing shoreward, except in summer, when there was no local maximum in the middle of the TS. Further analyses proved the interannual wave climate variability in the TS is controlled predominantly by tropical cyclone activities in summer and by the northeasterly monsoon winds in winter. Furthermore, the interannual SWHA in the TS was found correlated highly negatively with the ENSO phenomenon. This relationship mainly derives from that during the northeasterly monsoon seasons. During the northeasterly monsoon seasons in El Ni?o(La Ni?a) years, the negative(positive) SWHA in the TS derives from weakened(strengthened) northeasterly monsoon winds induced by a lower-tropospheric anomalous anticyclone(cyclone) over the western Pacific Ocean and the South China Sea. During the southwesterly monsoon season in El Ni?o(La Ni?a) years, however, the SWH in the TS tends to increase(decrease) anomalously because of intensified(weakened) TC activities over the western North Pacific Ocean and adjacent seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号