首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
土地覆盖变化是全球变化研究的核心,而精准分类是开展土地覆盖变化研究的基础。高分辨率遥感卫星技术的快速发展对地表分类的速度和精度提出了双重挑战,近年来人工智能等新技术的发展为图像自动分割提供了实现途径,而以卷积神经网络为代表的深度学习方法在遥感图像分类领域也具有独特的优势。为对比深度学习模型设计对高分辨率图像分类结果的影响,本文以郑州市2019年高分1号影像作为输入,对比研究了基于UNet模型改进的4种不同深度学习网络模型在高分辨率影像土地覆盖自动分类应用中的差异,探讨了残差网络、模型损失函数、跳层连接和注意力机制模块等编码和解码设定对于分类精度的影响机制。研究发现:同时加入多尺度损失函数、跳层连接和注意力机制模块的MS-EfficientUNet模型对郑州市土地覆盖分类结果最优,基于像元评价的整体分类精度可达0.7981。通过在解码器中引入多尺度损失函数可有效提高林地、水体和其他类别的分类精度;而对编码器进行改进,加入跳层连接和注意力机制可进一步提高草地、水体和其他类别地物的分类精度。研究结果表明,深度学习技术在高分辨率遥感影像自动分类中具有潜在应用价值,但分类结果精度的进一步提高和多级别大范围的精细分类方法仍是下一步研究的重点。  相似文献   

2.
地表覆盖数据是关于土地利用信息的重要来源,在地理国情监测、气候变化研究、生态环境评估等方面发挥着重要的作用。本文以广东省广州市作为研究区域,利用OSM数据结合FROMGLC数据和Landsat8遥感影像数据,对研究区域地表覆盖进行分类并完成地表覆盖制图。实验结果表明,利用OSM数据进行地表覆盖制图结果总体精度较高,具有可用性,但是OSM数据空白区域占比较大,有数据区域个别要素数量较少,在参考选取样本时,样本代表性不够高,部分类型的地表覆盖分类精度较低。  相似文献   

3.
面对实际的遥感影像分类任务,采用深度神经网络的方法存在的最大问题是缺乏充足的标注样本,如何使用较少的标注样本实现较高精度的遥感影像分类,是目前需要解决的问题。ImageNet作为世界上最大的图像识别数据集,在其上训练出的模型有着丰富的底层特征。对ImageNet预训练模型进行微调是最常见的迁移学习方法,能够一定程度利用其丰富的底层特征,提高分类精度。但ImageNet影像特征与遥感影像差距较大,对分类效果提升有限。为了解决上述问题,本文基于传递迁移学习思想,结合深度神经网络,提出一种基于深度传递迁移学习的遥感影像分类方法。该方法通过构建以开源遥感场景识别数据集为源域的中间域,并以ImageNet预训练权重为源域、待分类遥感影像为目标域进行迁移学习,提高遥感影像分类精度。首先,以ImageNet预训练VGG16网络为基础,为加速卷积层权重更新而将全连接层替换为全局平均池化层,构建GAP-VGG16,使用中间域数据集训练ImageNet预训练GAP-VGG16以获取权重;然后,以SegNet网络为基础,在SegNet中加入卷积层设计了T-SegNet,以对获取的权重进一步地提取。最后,将获取的权重迁移到T-SegNet中,使用目标域数据集训练,实现遥感影像分类。本文选取Aerial Image Dataset和UC Merced Land-Use DataSet作为中间域数据集的数据源,资源三号盘锦地区影像为目标域影像,并分别选取了50%和25%数量的训练样本进行实验。实验结果表明,在50%和25%数量的训练样本下,本文方法分类结果相比SegNet的Kappa系数分别提高了0.0459和0.0545,相比ImageNet预训练SegNet的Kappa系数分别提高了0.0377和0.0346,且在样本数较少的类别上,本文方法分类精度提升更明显。  相似文献   

4.
文章介绍和对比了几种遥感影像的分类和信息提取方法,通过对比目视判读、基于像元的分类方法和面向对象的分类方法在地理国情普查中地表覆盖提取结果的精度和效率,验证了利用面向对象的遥感影像信息提取技术在耕地保护工作中的优势。  相似文献   

5.
自动提取城市建筑物对城市规划、防灾避险等行业应用具有重要意义,当前利用高空间分辨率遥感影像进行建筑物提取的卷积神经网络在网络结构和损失函数上都存在提升的空间。本研究提出一种卷积神经网络SE-Unet,以U-Net网络结构为基础,在编码器内使用特征压缩激活模块增加网络特征学习能力,在解码器中复用编码器中相应尺度的特征实现空间信息的恢复;并使用dice和交叉熵函数复合的损失函数进行训练,减轻了建筑物提取任务中的样本不平衡问题。实验采用了Massachusetts建筑物数据集,和SegNet、LinkNet、U-Net等模型进行对比,实验中SE-Unet在准确度、召回率、F1分数和总体精度 4项精度指标中表现最优,分别达到0.8704、0.8496、0.8599、0.9472,在测试影像中对大小各异和形状不规则的建筑物具有更好的识别效果。  相似文献   

6.
遥感卫星数据是地球表面信息的重要来源,但利用传统的遥感分类方法进行土地覆盖分类局限性大、过程繁琐、解译精度依赖专家经验,而深度学习方法可以自适应地提取地物更多深层次的特征信息,适用于高分辨率遥感影像的土地覆盖分类。文中对高分辨率影像中水体、交通运输、建筑、耕地、草地、林地、裸土等进行高精度分类,结合遥感多地物分类的特点,以DeepLabV3+模型为基础,作出了以下改进:(1)骨干网络的改进,使用ResNeSt代替ResNet作为骨干网络;(2)空洞空间金字塔池化模块的改进,首先在并联的每个分支的前一层增加一个空洞率相对较小的空洞卷积,其次在分支后层加入串联的空洞率逐渐减小的空洞卷积层。使用土地覆盖样本库和自制样本库进行模型训练、测试。结果表明,改进模型在2个数据集的精度和时间效率均明显优于原始DeepLabV3+模型:土地覆盖样本库总体精度达到88.08%,自制样本库总体精度达到85.22%,较原始DeepLabV3+模型分别提升了1.35%和3.4%,时间效率每epoch减少0.39 h。改进模型能够为数据量以每日TB级增加的高分影像提供更加快速精确的土地覆盖分类结果。  相似文献   

7.
残差网络是近几年提出的一种新型深度卷积网络,通过增加网络深度提高分类的准确率,也解决了网络退化问题。基于残差学习原理,设计了针对高光谱遥感图像分类的光谱-空间残差网络模型。首先,将原始高光谱遥感数据三维立方体输入网络模型,并使用特定的卷积核对光谱特征进行降维;然后,利用光谱残差模块和空间残差按模块分别且连续地学习光谱和空间特征;最后,对提取到的特征进行池化操作并分类。此外,为规范训练数据和防止过拟合,学习过程中使用了批量归一化和dropout的方法。所设计网络模型在Indian Pines和Pavia U数据集上进行了验证实验,结果表明,所提方法有效地缓解了网络退化的问题,且在分类精度上也高于支持向量机、卷积神经网络等现有算法。  相似文献   

8.
本文探讨了基于构建多时相光谱库对中分辨率遥感影像进行地表覆盖自动分类的有效性.通过对研究区域Landsat影像进行定量化处理,获取研究区域真实地表反射率,构建研究区域2017年夏冬季典型地物的光谱先验知识库;利用构建光谱库对研究区域2018年夏季Landsat地表反射率影像进行自动随机森林分类,并利用2018年地理国情...  相似文献   

9.
地表信息提取是地理国情监测和环境保护的重要环节,本文选用Landsat-8 OLI遥感影像为主要数据源,针对分类样本数据少这一问题,在对2015年和2017年全球地表覆盖数据优化处理的基础上,将其作为分类的先验知识,以最大似然法、支持向量机(Support Vector Machine,SVM)和随机森林(Random Forest,RF)机器学习方法,以及基于VggNet-16和ResNet-18模型的深度学习方法,对黄河三角洲区域进行地表信息提取方法的应用研究.结果表明,在利用粒子群优化遗传算法进行特征优化的基础上,RF和SVM模型分类总体精度较高,其中RF和SVM模型分类总体精度最高可达87.3%、86%;VggNet-16和ResNet-18两种模型的分类精度较机器学习方法有较大提升,其中以ResNet-18分类精度最佳,最高总体精度可达94.1%,Kappa系数为0.91.本文的研究方法在中分辨率遥感地物分类时具有较好的适用性和推广价值.  相似文献   

10.
地表覆盖分类信息是反映自然、人工地表覆盖要素的综合体,包含植被、土壤、冰川、河流、湖泊、沼泽湿地及各类人工构筑物等元素,侧重描述地球表面的自然属性,具有明确的时间及空间特性。地表覆盖分类信息数据量大、现势性强、人工评价费时,其自动化评价长期以来存在许多技术难点。本文基于面向对象的图斑分类体系,引入深度卷积神经网络对现有地理国情普查-地表覆盖分类数据进行分类评价,并通过试验利用AlexNet模型实现地表覆盖分类评价验证。试验结果表明,该方法可有效判读耕地、房屋2类图斑,正确分类隶属度优于99%,而由于数据较少、训练不充分,林地、水体图斑正确分类隶属度不高,分别为62.73%和43.59%。使用本文方法,经过大量数据充分微调的深度学习AlexNet可有效地计算图斑的地类隶属度,并实现自动地表覆盖分类图斑量化评价。  相似文献   

11.
高分辨率遥感影像在地面自动目标提取中得到了广泛应用,然而利用传统算法,很难高精度地进行实时的建筑物屋顶绘图。本文使用深度学习方法探讨建筑物屋顶分割,由于卷积运算对形变、旋转、光照条件的不敏感,设计了一种用于建筑物屋顶提取的深度卷积神经网络,提出的网络为级联式全卷积神经网络,在深度卷积神经网络的设计中使用了特征复用和特征增强,实现建筑物的自动精确提取。以美国马萨诸塞州建筑物数据集为基础的实验结果表明,本文提出的网络结构取得了92.3%的总体预测精度,和其他方法相比,本文提出的方法具有更高的精度  相似文献   

12.
遥感影像目标识别在众多领域中具有极高的理论意义与应用价值,更快速、更精确的目标识别方法研究是目前遥感及图像研究领域的热点与难点。本文将深度学习的方法应用于遥感影像目标识别中,提出基于Faster R-CNN深度学习网络的目标快速精确识别方法。该方法采用了包括基于RPN的建议区域提取方法和VGG16训练卷积网络模型,构建了面向遥感影像目标识别的深度卷积神经网络。为验证该方法的精度及性能,在Caffe深度学习框架上,选取高分辨率遥感影像中飞机、油罐、操场及立交桥目标进行验证实验。结果表明,基于Faster R-CNN的深度学习方法能够实现对遥感影像目标的快速、准确识别,同时具有较好的推广性。通过本文的研究,证明基于Faster R-CNN深度学习的高分遥感影像目标识别方法具有显著优势和潜力,对基于其他深度学习方法的目标识别研究也有一定的参考意义。  相似文献   

13.
如何快速获取无辅助参数卫星遥感影像地理位置是非合作方式获取的遥感影像信息充分利用的一个关键,利用影像特征的相似性对卫星遥感影像检索来实现定位,是获取无辅助参数卫星遥感影像地理位置的有效手段。为了探寻影像深度学习全局特征用于无辅助参数卫星遥感影像检索定位的可行性,建立了包括Precision@K、平均排序、特征提取时间、特征相似性计算时间、硬件消耗等,涵盖有效性、效率2个方面共计5类指标的评估体系。采用谷歌地球提供的影像数据作为基准影像,在资源三号夏季及冬季数据集上,分别利用AlexNet、VggNet、ResNet、DenseNet、EfficientNet等几种代表性的卷积神经网络预训练模型提取基准影像及查询影像的全局特征,依据评估体系中的指标,对这些网络模型的影像表征效果进行全面的量化评估与分析。试验分析结果表明,DenseNet、ResNet-18、VggNet这3个深度学习神经网络预训练模型提取的全局特征,综合表征效果较好,可有效用于卫星遥感影像检索定位;当K值取200时,DenseNet网络模型的Precision@K值可以达到59.5%,ResNet-18和VggNet网络模型紧随其后,分别为49.7%和48.0%,为进一步利用深度学习全局特征进行卫星遥感影像检索定位,找出了最佳的候选网络模型,为下一步模型优化等研究奠定了基础。  相似文献   

14.
随着多光谱传感器的广泛运用,利用地物光谱响应特征提取地表信息的技术日益成熟,但是由于地表状况的复杂性和光谱响应的局限性,光谱方法在指示平均大小、空间异向性、空间分布、空间异质性等格局信息方面存在不足,因此挖掘遥感影像的空间格局特征日益受到研究者的重视。已有研究发现,变异参数与地表场景参数存在一定的对应关系,通过变异参数可以实现地表场景参数的提取,因此变异函数分析方法被广泛应用于真实遥感影像格局分析中,具体包括平均尺度提取、周期性格局探测、空间异质性表征与空间异向性描述等地表格局参数量化方面、最佳尺度选择与影像纹理分析等遥感影像信息提取方面。尽管变异函数分析方法在上述应用领域中都发挥了重要作用,但是当前利用变异函数进行遥感影像空间格局分析大多局限于定性描述层面,缺乏精确化的量化描述与分析,限制了变异函数分析方法应用的进一步拓展,究其原因在于对遥感影像格局变异函数分析的内在机制缺乏深入了解。本文回顾了近20年来变异函数分析方法在遥感格局分析领域的主要应用,并对该方法本身的优势和存在的不足进行了总结,可为变异函数这一工具在遥感影像格局分析方面的有效应用提供参考。  相似文献   

15.
随着遥感影像分辨率的提高,植被信息的高精度提取对于了解地表植被变化规律、评价生态区域具有重要意义。针对传统方法跨季节植被提取不完整问题,本文基于高分2号(GF-2)卫星数据,提出一种基于特征分离机制的深度学习语义分割网络植被提取方法。该网络在Densenet的基础增加可分离卷积和空间金字塔结合的特征分离机制来增大感受野,更有效利用植被的特征信息,提升了模型的精度。本文通过构建高精细跨季节植被样本库,使用本文所提方法,完成了遥感影像植被信息提取,并选取总体准确度、F1值和交并比作为评价指标,对不同的传统方法和深度学习方法进行精度对比与分析。实验结果表明,本文方法提取植被的效果较好,其中F1分数达到91.91%,总体准确度达到92.79%,交并比达到85.10%。对高分1号、高分6号和高景1号遥感影像进行植被提取通用性验证,结果表明本文方法具有一定的通用能力,可以从高分辨率遥感影像中准确地、自动地提取植被。本文研究成果可为城市生态环境评价和植被的应用研究提供数据参考。  相似文献   

16.
受到分类目标趋于多样化和影像因素复杂的影响,基于高分辨率遥感影像提取城市不透水面的方法普遍精度不高。本文旨在探索快速有效地利用高分辨率遥感影像提取不透水面方法。以梧州市高分二号遥感卫星影像为例,采用支持向量机方法应用于不透水面分类中。这种方法首先根据高斯核函数训练出样本空间,然后直接对经过HSL色彩空间变换后的影像进行分类,使得有效特征信息增加进而分类精度提高。实验结果证明了这种方法的有效性。  相似文献   

17.
植被分类是森林资源调查与动态监测的基础与前提。当前植被分类研究大都利用光学遥感影像,然而,光学遥感成像易受到云雨覆盖的影响,难以构建完整时间序列,植被分类精度有限。微波遥感具有全天时全天候、时间序列完整的优势,在植被调查与分析中具有巨大的应用潜力。本文利用2018年Sentinel-1A微波遥感时间序列数据和深度循环网络方法,对秦岭太白山区的森林植被进行分类制图。首先利用Sentinel-2光学影像与数字高程数据对研究区进行多尺度分割;然后将处理后的时间序列Sentinel-1A数据空间叠加到分割地块上,构建地块的多元时间序列曲线;最后利用深度循环网络提取与学习多元时间序列的时序特征并分类。实验结果表明:① 与传统机器学习方法(如RF、SVM)相比,本文提出的深度循环网络方法的分类精度提高10%以上;② 在Sentinel-1A微波极化特征组合中VV+VH表现最好,与VV+VH+VV/VH极化特征组合的精度相近;③ 使用全年的时间影像构建时间序列分类精度最高,达到82%。研究表明,利用深度循环网络与时间序列Sentinel-1A数据的方法能够有效提高植被分类的精度,从数据源与分类方法上为森林植被分类研究提供了新的思路。  相似文献   

18.
POI辅助下的高分辨率遥感影像城市建筑物功能分类研究   总被引:1,自引:0,他引:1  
城市建筑物是城市的重要组成部分,对城市建筑物进行功能分类可以为城市功能区划分提供有利依据,辅助政府部门对城市规划、土地利用、资源、人口等方面的分布与分配进行管理与决策,有助于推进城镇化建设的可持续发展。仅利用目前的遥感分类技术难以对高分辨率遥感影像的城市建筑物信息进行功能分类,然而将遥感、互联网兴趣点(Point of Interest, POI)数据以及GIS技术有效地结合在一起,可以更为细致地分析城市信息,不仅实现了建筑物功能分类,而且提高了分类的准确率与可信度。本文首先选取卷积神经网络(Convolutional Neural Networks, CNN)方法对高分辨率遥感影像数据进行建筑物提取;然后,对POI数据的城市商服、公建和住宅用地进行核密度分析;最后分别统计每个建筑物3种用地的核密度平均值,并将该值设置为此建筑物的属性值,并结合POI数据的实际情况选择具有最佳功能分类精度的属性值作为阈值提取3种用地信息,从而完成不同功能的城市建筑物分类。精度评价结果表明,该方法对3种用地的提取效果良好,分类精度达到86%以上。  相似文献   

19.
GlobeLand 30和自发地理信息的对比分析研究   总被引:1,自引:0,他引:1  
地表覆盖数据是关于土地利用信息的重要来源,在地理国情监测、生态环境保护等方面发挥着重要的作用,目前遥感影像解译、实地测量是该数据生产的主要手段,但是仍然存在一定的局限性。随着Web2.0、互联网技术以及各种GPS设备的快速发展传播,普通大众也可以参与公众制图,志愿者用户的参与能够有效判定地表类型的空间分布和属性特征,提高地表覆盖制图的分类精度。本文以自发地理信息中最成功的项目OpenStreetMap为例,与中国新研制的全球最高30m分辨率地表覆盖数据产品GlobeLand 30进行对比分析,首先对数据进行相应的预处理和拓扑检查,然后建立两种数据的要素对应关系,最后生成误差矩阵并分析两种数据的一致性。实验结果表明:① OpenStreetMap数据缺失的部分主要是耕地类型,其草地和水体要素比GlobeLand 30更加丰富;② 2种数据的一致性较好为75%左右,其中林地和人造地表的精度较高,耕地和水体次之,草地较差;③ 重点对不一致区域的地表类型进行判断验证,能够发现GlobeLand 30数据中的错误分类,为进一步修改和优化提供依据。本文研究表明,自发地理信息中包含丰富的地表覆盖信息,能够给地表覆盖制图及评价验证带来巨大的发展潜力。  相似文献   

20.
文章通过深入研究广西某矿区航空遥感影像,以遥感影像基元模型为基础,辅以土地利用规划、现状信息建立影像基元与地理实体对象之间的关系,构建地理实体逻辑推理组合规则,进行遥感信息地理实体分类提取,进而对分类结果进行精度对比评价,实现高分遥感影像空间信息提取的自动化、智能化处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号