首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hazarganji Chiltan National Park in Balochistan, Pakistan was established in 1980 and the protected area was further extended in 1998. Large area of this mountain is still open for unmanaged human disturbances such as collection of wood for fuel purpose and livestock grazing. Removal of vegetation of rangelands has a significant negative impact on soil organic matter(SOM). This research evaluates litter decomposition in three sites of Hazarganji Chiltan mountain with varying history of human disturbances(unprotected site, young protected site and old protected site). Twigs of Pistacia khinjuk with approximately equal weight and length were placed in litter bags of mesh size 2 mm and were buried in 0-5 cm depth in three sites in January. Half of the twigs of each site received rain simulation in April, August, October, November and January while the other half of the twigs were subjected under natural conditions for 15 months. Twigs from each plot of each treatment of each site were collected from soil after every rain simulation in the previous month of experiment and were processed for weight loss assessment. Results showed that weight loss of twigs by decomposition was significantly higher in the soil of unprotected site as compared to other two sites and there was no difference between rain simulation and control treatments except that loss of weight of twigs of unprotected site was higher under control than rain simulation condition. To confirm that SOM was the major controlling factor for the decomposition of litter decay, soils of each site were collected and burned to remove SOM;thereafter, burned soil samples were mixed with homogenous powder of oven-dried native plants, incubated for 6 months and were provided with dissolved organic matter of the soils of each site. Results showed that there was no difference in the decomposition of litter between soils under controlled laboratory condition, which confirmed that SOM was a major controlling factor for the litter decay in soil under field conditions. The pyrosequencing analysis of the DNA of soils collected from three sites revealed the presence of bacterial species Thermovum composti.  相似文献   

2.
The modern landscape patterns of islands usually show obvious spatial heterogeneity and complex ecological effects due to the vulnerability of ecosystems with natural characteristics under increasing human activities. In this work, we studied the variation in landscape pattern of the Miaodao Archipelago in Bohai Sea, North China, from 1990 to 2019, and an evaluation index system was established to explore the impacts of natural conditions and human disturbances on the ecological effects in the pressure-state-response(PSR) framework. Empirical analysis was conducted on the natural conditions, human disturbances, and ecological effects. The results show that forest was the main component of the landscape pattern in the archipelago. Both of the areas offorest and construction land were increasing, and the areas of cropland and grassland were declining. Other landscape types changed slightly, and the landscape fragmentation was increasing. The natural condition exhibited positive effects while human disturbance showed negative effects on the local ecology. Human disturbances come mainly from shoreline use while the natural conditions were mainly from the elevation change. The ecological effects were resulted mainly from the net primary productivity and water yield.  相似文献   

3.
Microorganisms are nutritious resources for various soil fauna.Although soil fauna grazing affects microorganism composition and decomposition rate,the responses of soil fauna and leaf litter decomposition to added microorganism is little understood.In this study,in the coniferous and broad-leaved mixed forest of Tahe County in the northern Da Hinggan Mountains,China,three sampling sites(each has an area of 10 m2) were selected.The first two sites were sprinkled with 250 times(EM1) and 1000 times(EM2) diluted effective microorganism(EM) preparations evenly,and the third site was sprinkled with the same volume of water as a control site.The responses of soil fauna structure and leaf litter decomposition to EM treatment were conducted during three years.The results revealed that EM treatment resulted in significant increase of soil organic matter.The number of soil fauna in the EM1 and EM2 sites increased by 12.88% and 2.23% compared to the control site,and among them springtails and mites showed the highest increase.However,the groups of soil fauna in the EM1 and EM2 sites decreased by 6 and 9,respectively.And the changes in the diversity and evenness index were relatively complicated.EM treatment slowed the decomposition of broad-leaved litter,but accelerated the decomposition of coniferous litter.However,the decomposition rate of broad-leaved litter was still higher than that of coniferous litter.The results of this study suggested that the added microorganisms could help individual growth of soil fauna,and this method led to a change in the process of leaf litter decomposition.This paper did not analyze the activity of soil microorganisms,thus it is difficult to clearly explain the complex relationships among litter type,soil fauna and soil microorganisms.Further research on this subject is needed.  相似文献   

4.
Understanding of the habitat range of threatened Himalayan medicinal plants which are declining in their abundance due to high anthropogenic disturbances is essential for developing conservation strategies and agrotechnologies for cultivation. In this communication, we have discussed the habitat range of two alpine medicinal plants, Aconitum naviculare (Bruehl) Stapf and Neopicrorhiza scrophulariiflora (Pennel) Hong in a trans-Himalayan dry valley of central Nepal, Manang district. They are the most prioritized medicinal plants of the study area in terms of ethnomedicinal uses. A. naviculare occurs on warm and dry south facing slopes between 4090-4650 m asl along with sclerophyllous and thorny alpine scrubs, while N. scrophulariiflora is exclusively found on cool and moist north facing slope between 4000 and 4400 m asl where adequate water is available from snow melt to create a suitable habitat for this wetland dependent species. The soil in rooting zone of the two plants differs significantly in organic carbon (OC), organic matter (OM), total nitrogen (N) and carbon to nitrogen (C/N) ratio. Due to cool and moist condition of N. scrophulariiflora habitat, accumulation of soil OC is higher, but soil N content is lower probably due to slow release from litter, higher leaching loss and greater retention in perennial live biomass of the plant. The C/N ratio of soil is more suitable in A. navuculare habitat than that of N scrophulariiflora for N supply. Warm and sunny site with N rich soil can be suitable for cultivation ofA. naviculare, while moist and cool site with organic soil for N. scrophulariiflora. The populations of both the plants are fragmented and small. Due to collection by human and trampling damage by livestock, the population of A. naviculare was found absent in open areas in five of the six sampling sites and it was confined only within the bushes of alpine scrubs. For N. serophulariiflora, high probability of complete receding of small glaeiers may be a new threat in future to its habitat. The information about habitat conditions, together with the information from other areas, ean be useful to identify potential habitats and plan for cultivation or domestication of the two medieinal plants.  相似文献   

5.
《山地科学学报》2020,17(6):1294-1309
Perturbations caused by windstorms usually lead to the harvesting and clearcutting of fallen trees and wood debris, especially in the areas of managed forest ecosystems. Induced shifts in soils due to management practices play a crucial role in the restoration and maintaining of key ecosystem services.This paper focuses on topsoil chemical properties in relation to vegetation type(trees, shrubs and herbs)evolving at windstorm damaged(in 2004) areas with former Norway spruce(Picea abies) forests in the Tatra Mts. region(Slovakia). We assessed the content of topsoil organic matter fractions(extractives,holocellulose(HC) and lignin(Lig)), carbon in microbial biomass(C_(mic)), soil organic matter(SOM)and the content of elements N, C, H and S. The study plots represent different types of post-windthrow disturbance history/regime: wooden debris extraction(EXT), wooden debris not extracted(NEX), wooden debris extraction followed by wildfire(FIR), affected by the windstorm in 2014 with the subsequent wooden debris extraction(REX) and unaffected(REF). Our results revealed significant differences among sites in the content of dichloromethane extractives(EXT vs. REX and FIR), acetone extractives(NEX vs. EXT, FIR and REF), ethanol extractives(FIR vs. EXT, NEX and REF), water extractives(FIR vs. REX, NEX) and C_(mic)(EXT vs.NEX, FIR and REF). The topsoil of Vaccinium myrtillus and Picea abies showed a higher ratio of C/N, N/Lig, and Lig/HC compared to Rubus idaeus,Avenella flexuosa, Calamagrostis villosa, and Larix decidua. The content of N, C, H and S varied between topsoil with shrubs(Vaccinium myrtillus, Rubus idaeus) and grasses(Avenella flexuosa,Calamagrostis villosa). A positive correlation between soil organic matter(SOM) and polar extractives(r=0.81) and a negative correlation between SOM and HC(r=-0.83) was revealed. The carbon content in microbial biomass(C_(mic)) is positively correlated with acid soluble lignin(ASL)(r=0.85). We also identified a strong correlation between Klason lignin(KL) and the Lig/HC ratio(r=0.97).  相似文献   

6.
西南喀斯特地区不同石漠化阶段土壤物理参数的变异研究   总被引:2,自引:1,他引:1  
为了探索中国西南喀斯特地区石漠化过程中土壤物理性质的变异规律,采用野外采样与实验室分析相结合的方法,对贵州省荔波县及普定县不同石漠化阶段典型土壤的物理参数进行了研究。结果表明:土壤有机质质量分数随石漠化程度的加深逐渐减小;非石漠化土壤重度仅为6.15 N/m3,随着石漠化的发展,土壤重度逐渐增大,总孔隙度随之减小;石漠化的发展导致土壤黏粒含量升高;土壤水稳性团聚体质量分数及微团聚体的结构系数均随石漠化程度加深而减小;土壤有机质质量分数与重度、砂粒含量、大于5 mm团聚体含量及结构系数的相关系数分别为-0.921 2、0.827 7、0.907 2、0.899 3,均达到极显著水平。通过封山育林等措施增加喀斯特地区有机质积累可改善土壤物理性质,对防治石漠化具有重要意义。  相似文献   

7.
A field experiment was conducted in Jungar Banner, Inner Mongolia, China to study the effects of plant types on the physical structure and chemical properties of open-cast mining soils reclaimed for 15 years, and to analyze the triggering factors of the soil formation. Results indicate that plant types affect soil-forming process especially in the upper layer (0–20 cm), and the spatial structure of reclaimed plant is the main reason for variability of the soil-forming process. In the upper soil layer at the site reclaimed with mixed plants, the concentrations of soil organic matter (SOM) and soil organic carbon (SOC) are the highest, and they were significantly higher at the sites reclaimed with Leymus chinensis, Caragana sinica, which is mainly due to a large amount of litter fall and root exudation in herbages and shrubs. However, the concentrations of SOM and SOC in the soils at the reclaimed sites are quite low comparing with those in local primary soil, which indicates the importance of using organic amendments during the ecological restoration in the study area.  相似文献   

8.
An understanding of the physical,chemical,and biological properties of a soil provides a basis for soil use and management.This paper reports the major physico-chemical properties and enzyme activities of the soils of Lhasa’s main arable lands and the factors that influence these soil properties.Composite and core samples were taken from the three main arable soil types(alluvial soil,subalpine arable steppe soil,and subalpine arable meadow soil) and were analysed using standard methods.The bulk density and the ventilation porosity ratio of the soils were close to the recommended values for arable lands,and the dominant soil texture was sandy.The soil moisture release rates were arable steppe soil > alluvial soil > arable meadow soil.Soil organic matter content,Cation-Exchange Capacity(CEC),total and available nitrogen content,and catalase activity of the arable meadow soil were higher than those of the alluvial and the arable steppe soils,while soil pH in the arable meadow was lower.Most of the measured properties did not show a significant variance among these three soils.However,the measured indices(apart from the total potassium) indicate that there are notable differences among the three types of soil.The results implied that the utilisation patterns of the arable soil or human activities,such as tillage practices and fertiliser applications,have a substantialeffect on the soil properties in this region.Our results suggest that the cultivation practices in the region have apparently positive impact on the soil organic matter,nutrient contents and bulk density probably due to the sound fertiliser management such as the applications of farmyard manure and chemical fertilisers.However,intense cultivation practices lowered the activity of most soil enzymes.The results demonstrate that the choice of soil management strategy had a significant impact on the soil physicochemical and biological properties in the region studied.  相似文献   

9.
Understanding the effects of elevation and related factors (climate, vegetation) on the physical and chemical soil properties can help to predict changes in response to future climate or afforestation forcings. This work aims to contribute to the knowledge of soil evolution and the classification of forest soils in relation to elevation in the montane stage, with special attention to podzolization and humus forms. The northern flank of the Moncayo Massif (Iberian Range, SW Europe) provides a unique opportunity to study a forest soils catena within a consistent quartzitic parent material over a relatively steep elevation gradient. With increasing elevation, pH, base saturation, exchangeable potassium, and fine silt-sized particles decrease significantly, while organic matter, the C/N ratio, soil aggregate stability, water repellency and coarse sand-sized particles increase significantly. The soil profiles shared a set of properties in all horizons: loamy-skeletal particle-size, extreme acidity (pH-H2O<5.6) and low base saturation (<50%). The most prevalent soil forming processes in the catena include topsoil organic matter accumulation and even podzolization, which increases with elevation. From the upper to lower landscape positions of wooded montane stage of the Moncayo Massif, mull-moder-mor humus and an Umbrisol-Cambisol-Podzol soil unit sequences were found.  相似文献   

10.
对湛江地区辣椒地土壤取样,测定了容重pH、及有机质、全氮、碱解氮、速效磷、速效钾含量。结果表明,辣椒地土壤肥力比甘蔗地土壤有明显改善,且随年限延长呈提高的趋势;与甘蔗地土壤比较,辣椒地土壤速效钾含量呈降低趋势。  相似文献   

11.
Anthropogenic disturbances influence plant regeneration and species diversity, which impact the conservation status of protected areas. A study was conducted in the Sitakund Botanical Garden and Eco-park (SBGE), Chittagong, Bangladesh to analyze the natural regeneration and tree species diversity in disturbed and less disturbed zones. Stratified and systematic random sampling was used to select 50 sample plots from each of the two zones. A total number of 109 plant species from 43 families were recorded in the study; of which 93 species were of natural origin while the rest were planted. From the species with natural origin 66 were tree species, 9 were shrub species and 28 were climbers. Species richness, density of regeneration and disturbance index in the height classes (0- 0.5 m) and {dbh 〉 6 cm) indicated significant differences between the zones. The study analyzed how disturbances affect species diversity in the area. It was found that species richness and basal area are negatively related with disturbances. Moreover, density (N/ha) of trees was more likely to decrease with increasing tree height that reflects the huge demand of local people to harvest large trees as part of their income generating activities. The study findings have implications for future managementdecisions of the SGBE. To restore these ecosystems, management should focus on both biodiversity eonservation and providing benefits to local people without hampering forest ecosystems.  相似文献   

12.
昌乐县表层土壤元素地球化学组合特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
昌乐县土地质量地球化学调查与评价是按5件/km^2的密度布设表层土壤样品,并以“多点取样”的方式进行样品采集,采样深度为0~20cm。分析有机质、N,P,K,B,Mo,Mn,Se,I,Ge,F,Pb,Zn,As,Cd,Cr,Cu,Hg,Ni,Co,V,pH和全盐量,共23项。该文统计了昌乐县表层土壤5818件样品的23种元素(指标)的数据,通过spss软件进行了聚类分析将23种元素(指标)划分为3个簇群和9个单元素簇,认为第一簇群主要受地质背景的影响;第二簇群主要受黏土矿物的影响;第三簇群主要与自然因素及人类农业生产活动有关。通过因子分析得出用10个因子就基本可以代表昌乐县原来23种元素(指标)的分布特征,并对F^1,F^2因子进行了解释,进一步证实了Ni,Co,Cr,V,Mn等亲铁元素与地质背景密切相关;有机质、N,Se则与自然因素及人类农业生产活动有关。首次摸清了昌乐县表层土壤元素组合分布特征,认为昌乐县表层土壤元素分布主要与地质背景、元素自身性质和人类农业生产活动有关。  相似文献   

13.
Calcaric regosols are a valuable land resource, distributed widely across western China. Soil quality has deteriorated considerably in recent years owing to the blind pursuit of economic benefits. A 2-year field experiment was carried out to evaluate the effects of using spent mushroom compost, leguminous plant (Vicia sepium L.) compost, and a combination of the two (at a 1:1 and 2:1 ratio), on rice yield and soil quality in a suburb of China. Vicia sepium L. composted with spent mushroom compost at a 1:1 ratio produced the highest grain and stover yield, grain and stover phosphorus concentration, and phosphorus uptake of rice; they were 56.5%, 93.2%, 89.3%, 198.6% and 22.2% greater than control soil, respectively. The 2:1 ratio (Vicia sepium L.: spent mushroom compost) produced the highest grain N concentration, stover N concentration, and N uptake; they were 31.6%, 31.4%, and 40.7% higher than control, respectively. Soil physical, chemical, and environmental properties were improved with the application of Vicia sepium L. composted with spent mushroom compost at a 2:1 ratio. In particular, soil water-stable aggregates, organic carbon, particulate organic carbon, total nitrogen, available potassium, and cation exchange capacity increased, whereas bulk density, pH, and phytoavailable heavy metals decreased. This organic treatment is beneficial to improve soil quality indicators, and contribute to soil restoration.  相似文献   

14.
通过对高密市耕地表层土壤进行调查,获得了N,P,K,Cu,Zn,Mo,B等7种营养元素全量和有效量,以及pH值和有机质数据,采用数据统计、相关性分析、对比分析等方法,研究有效态地球化学特征及其受控因素。结果表明,元素全量对有效态具有直观制约影响,元素全量与其有效量均呈正相关,与P,K,Cu,Zn有效度呈正相关,表现为协同作用的有N全量对P有效量,P全量对K,Cu,Zn有效量,Cu全量对P,Zn有效量,Zn全量对P,Cu有效量,P全量对K有效量;酸性土壤能够提高N,P,Cu,Zn,Mo元素的生物有效性,碱性土壤能够提高B元素的生物有效性;有机质能够影响土壤营养元素活化,对有效量有一定的促进作用,有机质增加可以不同程度提高K,Zn,B元素的有效度,但会降低N元素的有效度;不同土壤类型的土壤理化性质有所不同,如土壤pH值和有机质的差异,是影响土壤营养元素有效态的重要因素。  相似文献   

15.
通过测定雷州半岛南部845个耕地土壤样品pH、有机质、全氮、有效磷、速效钾、碱解氮的含量,采用层次分析法确定各肥力评价指标权重,应用模糊数学法对该区域耕地土壤肥力进行综合评价,并利用ArcGIS 9.2软件对土壤肥力空间变异进行分析.结果表明:雷州半岛南部土壤有机质、全氮、有效磷、速效钾、碱解氮平均值分别为26.18 g/kg、1.48 g/kg 、34.63 mg/kg、158.57 mg/kg、133.17 mg/kg;土壤速效磷的变异系数最高,为103.14%,属强变异性,有机质、速效钾、碱解氮、全氮的变异系数属中等变异性,pH值的变异系数最小.土壤肥力总体水平处于中等偏低;从空间分布来看,土壤肥力中部高,东北、西南部相对较低  相似文献   

16.
本文选择济南市历城区典型土壤中N、P、K3种养分元素进行化学测试分析,对该地区的浅层土壤元素有效态地球化学背景值及在不同类型土壤中的分布特征进行研究.研究结果表明:该地区土壤质量较好,元素有效量与全量总体排序一致,不同元素的有效度相差十分悬殊.5种土壤类型的元素有效度具有一定差异性,潮褐土、潮土中N、P、K元素的有效量...  相似文献   

17.
Changes in the fungal and bacterial biomass and community structure in litter after the volcanic eruptions of Mount Usu, northern Japan were investigated using a chronosequence approach, which is widely used for analyzing vegetation succession. The vegetation changed from bare ground(10 years after the eruptions) with little plant cover and poor soil to monotonic grassland dominated by Polygonum sachalinense with undeveloped soil(33 years) and then to deciduous broad-leaved forest dominated by Populus maximowiczii with diverse species composition and well-developed soil(100 years). At three chronosequential sites, we evaluated the compositions of phospholipid fatty acids(PLFAs), carbon(C) and nitrogen(N) contents and the isotope ratios of C(δ13C) and N(δ15N) in the litter of two dominant species, Polygonum sachalinense and Populus maximowiczii. The C/N ratio, δ13C and δ15N in the litter of these two species were higher in the forest than that in the bare ground and grassland. The PLFAs gradually increased from the bare ground to the forest, showing that microbial biomass increased with the development of the soil and/or vegetation. The fungi-to-bacteria ratio of PLFA was constant at 5.3 ± 1.4 in all three sites, suggesting that fungi were predominant. A canonical correspondence analysis suggested that the PLFA composition was related tothe successional ages and the developing soil properties(P 0.05, ANOSIM). The chronosequential analysis effectively detected the successional changes in both microbial and plant communities.  相似文献   

18.
Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation. Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of biophysical conditions and differences in farmers’ management behavior. The main purpose of this paper is to develop a composite index of cropland physical disturbance intensity (CLDI) to reflect the plot-scale discrepancy of potential soil erosion in mountainous areas. The study was based on both plot survey and household interview data, collected from six typical catchments in mountainous areas of southwestern China. Four kinds of physical disturbance practices and two kinds of conservation practices during one crop rotation period were synthesized to develop the CLDI index. The rough set theory was referenced to avoid subjectivity during weight allocation. The results show that conventional tillage, deep fertilization, and manual weeding are the main causes of cropland soil erosion, whereas manure application in combination with seasonal fallow reduces soil erosion. Different crop types as well as cropland location factors determine the spatial pattern of CLDI. Crop rotation modes with major crops of tobacco and maize resulted in a maximal CLDI, and cropland plots with a distance radius of 150 meters away from households received the most intensive physical disturbance. These results are critical to help better protect rural environments in mountainous areas. Based on the results, methods to reduce cropland soil erosion are suggested.  相似文献   

19.
Tourism in mountainous regions is a significant source of revenue generation. However, it has also been associated with many adverse environmental consequences. This study aims at assessing the negative impacts of the incessant upsurge in tourism development on the physical environment of Mussoorie, a well-known mountain tourist destination in India. The impact indicators for the region were identified and assessed by qualitative and quantitative analysis of field observations. The observations indicated the aggravation of traffic congestion, atmospheric pollution, undisposed solid waste, water scarcity and infrastructure unavailability as the prevalent issues, especially during the peak tourist months. The extent of the consequential damage to the environment was evaluated by conducting an assessment of tourism-induced human disturbance on the natural landscape of the town. Slope, slope aspect, vegetation cover, road network and drainage network were incorporated as the determining landscape attributes to prepare thematic maps of landscape quality (perceivable intrinsic properties) and landscape fragility (vulnerability to anthropogenic disturbances) using GIS technique. An absorption capacity map was finally prepared to characterize the study area into regions of different conservation needs. The results identified the need for planning appropriate preservation strategies for different tourist places in the town. The study can be used by the policy makers for implementing the regulatory measures against potential disturbances due to mass-tourism.  相似文献   

20.
在已集中连片改造为农田的盐碱地上,开展无人机遥感作物土壤空间异质性分析与光谱指数响应胁迫诊断对于提升盐碱地利用效率、创造更多经济效益与生态价值具有重要意义。本研究以山东省东营市黄河三角洲典型滨海盐碱地集中连片旱作农田的主要作物——高粱和玉米为研究对象,利用固定翼无人机获取400 hm2滨海盐碱地多光谱遥感数据,并结合地面195个采样点的3个土层(0~10 cm、10~20 cm、20~40 cm)的土壤属性数据,对该研究区域内作物生长的土壤环境因子进行空间异质性分析与光谱指数响应胁迫诊断。基于土壤属性数据,利用反距离加权插值法,绘制该研究区域内土壤盐分、pH、有机质、全氮和速效氮共5个指标含量的水平与垂直空间分布图。插值结果显示,5种土壤属性指标存在显著水平和垂直空间异质性。基于随机森林模型,采用递归特征消除法,结合土壤指标对光谱指数的重要性值,探讨影响作物生长的主要土壤环境胁迫因子。结果表明,5种土壤属性因子均会对玉米和高粱生长造成影响,但主要胁迫因子分别为土壤速效氮含量(10~20 cm)和3个土层的盐分含量。本研究为大面积农情胁迫监测提供了一项有效的地面与航空协同监测方案,为盐碱地旱作农田管理与决策提供了理论依据和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号