首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
利用小波变换对暴雨过程中GNSS气象要素的初步探索   总被引:1,自引:0,他引:1  
利用小波分解对地基GNSS获取的可降水量(PWV)、气压和对流层延迟(ZTD)等时序进行处理和分析,以暴雨的实际降水量作为判别依据。研究结果表明,1 h间隔PWV与ZTD的小波高频分解系数接近,均能够从中提取暴雨预报特征信息,可用高频ZTD代替PWV进行小波分析;频率在30 min-1h之间的ZTD,预报时间信息应在第1~3层级进行搜寻,30 min以下频率的应在第3~5层级进行搜寻;db4小波分解PWV的暴雨预报阈值可设为-1.2,db4小波分解ZTD的暴雨预报阈值可设置为-0.007,db2小波分解ZTD的暴雨预报阈值可设为-0.01。  相似文献   

2.
利用ERA5大气再分析资料研究ZTD高程尺度因子的精细时间变化特征,构建顾及高程尺度因子精细时间变化的云贵川地区ZTD垂直剖面格网模型(YZTD-H模型)。以云贵川地区探空站分层ZTD数据作为参考值,检验YZTD-H模型的精度,并将其与GPT2w模型和GPT3模型进行比较。结果表明,顾及精细时间变化和垂直剖面变化的YZTD-H模型在时间维度和垂直剖面维度上均表现出较好的稳定性。  相似文献   

3.
利用ECMWF再分析地表资料,结合GPT2w模型提供的水汽递减率和温度递减率计算中国区域对流层延迟值的精度。首先,以中国地区75个探空站2015年地表实测气象参数为参考值,利用ECMWF地表资料得到的气象参数(P,T,e)的精度分别为1.76 hPa、1.96 K、1.98 hPa。然后,以相同测站2010~2015年探空站分层数据算得的ZTD为参考值,对ECMWF地表资料计算的ZTD的精度进行分析,并与利用探空仪地面观测数据为输入参数计算的ZTD的精度进行对比。结果显示,利用ECMWF地表资料计算的ZTD的平均bias为0.07 cm,平均RMS为3.72 cm,在低纬度地区优于利用探空仪地面观测数据为输入参数计算的ZTD的结果。以陆态网237个GNSS测站2015年的ZTD作为参考值,比对利用ECMWF地表资料计算的ZTD的精度,结果为3.41 cm。由此可知,ECMWF地面资料计算的ZTD的精度能满足普通用户对流层延迟的计算需求,可用于缺少气象参数的测站进行对流层延迟值的计算及其他相关应用。  相似文献   

4.
基于iGMAS产品综合与服务中心(ISC)发布的ISC产品及德国波茨坦地学研究中心(GFZ)发布的GBM产品和GBM钟差重采样后的GBM-300 s产品对MGEX测站进行多系统的精密单点定位(PPP)测试,对2018-01-01~01-15全球15个MGEX测站的定位精度、收敛速度、ZTD求解精度和测站钟差求解精度进行分析。结果表明,在北斗PPP方面,使用ISC产品的3D定位精度和收敛速度优于GBM产品0.89 mm和 24 min,ZTD解算精度和测站钟差求解精度优于GBM产品0.3 mm和0.02 ns;在GPS、GLONASS、Galileo单系统PPP和四系统组合PPP方面,使用ISC产品的ZTD求解精度和测站钟差求解精度同GBM产品互差小于1.5 mm和0.05 ns,两者性能一致,没有明显差别,但使用ISC产品的PPP定位精度在高程方向低于GBM产品2~3 mm,收敛速度慢于GBM产品5~20 min。通过分析iGMAS产品的精度和服务的可靠性,为现阶段iGMAS产品性能的进一步提升给出建议。  相似文献   

5.
利用无线电探空数据,对格网对流层模型GPT2w、IGGtrop及GTPs在中国区域的适用性进行分析。结果显示,GPT2w和IGGtrop在地表附近精度相当,RMS为4.0~4.2 cm,西部地区精度优于东部,东南沿海精度最差,夏季精度明显低于冬季,在中西部地区分辨率低的模型可能会产生异常偏差;GPT2w模型明显存在系统性偏差,中西部为正,东南部为负;3 km高度以上,IGGtrop模型精度明显优于GPT2w模型,且随高度增加精度保持稳定。在飞行器定位导航中,建议采用IGGtrop模型修正ZTD误差。GTPs模型时间分辨率高,精度明显优于传统的经验模型,尤其在东南沿海ZTD变化剧烈的区域,但由于其依赖于外部数据源,部分区域无法使用。  相似文献   

6.
针对现有区域天顶对流层延迟(ZTD)模型属于函数或格网型,参数固定,且难以表达ZTD时空快速变化特性等问题,提出一种基于小波变换、傅里叶级数拟合、自回归(AR)、支持向量回归(SVR)的组合预报新模型构建方法。该模型在时域内对ZTD序列进行小波变换,分解出低频和高频序列。低频序列采用傅里叶级数拟合成时间函数,高频序列则由AR进行预报。在空间域内利用SVR建立位置参数向傅里叶级数参数的映射。在该模型中输入时间与位置信息即可获取ZTD预报值。利用94个GNSS基站2 a的ZTD数据进行建模,24个GNSS基站1 a的ZTD数据进行预测对比。结果表明,实测值与模型预报值之间的平均偏差为-2.02 mm,均方根误差为3.07 cm,优于大部分区域ZTD模型。在伪距单点定位测试中,该模型能够显著提高定位精度。实验表明,该组合模型具有较高的预报精度和可靠性,具有一定的应用价值。  相似文献   

7.
利用小波变换方法对中国IGS站点ZTD时间序列进行分解与重构,分析ZTD序列的低频趋势项、高频年变化周期项与年降水量的对应关系,并结合气候资料分析原因。研究发现,ZTD低频趋势项与年降水量的变化趋势相同,ZTD高频周期项与年降水量变化存在较好的对应关系,ZTD年周期项峰值的高低对应年降水量的多少。  相似文献   

8.
采用14个MGEX测站观测数据,利用实时PPP估计方法计算得到Galileo、GPS和GPS/Galileo组合ZTD估值。14个测站的Galileo和GPS ZTD估值的相关系数绝大多数大于0.9,且Galileo-GPS ZTD差值的RMS为8~16 mm,RMS的平均值为12.3 mm,证明Galileo和GPS解的符合性良好,Galileo实时估计的ZTD精度满足要求。同时,IGS最终ZTD产品被用来评价各解算结果的精度,结果显示,GPS/Galileo联合解算时,相对于GPS单系统精度提高了5%~35%,相对于Galileo 单系统精度提高了25%~51%。  相似文献   

9.
利用实测天顶对流层延迟值(ZTD),在无气象参数条件下,提出一种对流层延迟建模与预报方法。首先利用频谱分析,得到ZTD时间序列周期特性,并在此基础上对ZTD进行建模,给出模型参数计算方法。然后,基于频谱分析模型拟合ZTD,并与实测值进行比较分析。最后,将分析得到的拟合残差用AR模型进行改正并预报。结果表明,基于频谱分析和AR补偿的ZTD改正预报模型能够满足不同测试环境下的需求,精度达到cm级。  相似文献   

10.
研究东日本地震、汶川地震和玉树地震震中及其附近区域在地震前后的水汽时间序列变化。首先分析震中MODIS水汽序列和震中附近探空站点水汽序列在地震前后的变化;然后基于GNSS ZTD与水汽之间的高相关性,以GNSS ZTD代替GNSS水汽,讨论震源区周围IGS站点的ZTD序列变化。研究发现,震后震中及其附近区域水汽值变化出现异常,且距离越近所受影响越大;水汽不断聚积,达到峰值后发生降水。  相似文献   

11.
对常用的3种天顶对流层延迟改正模型(Saastamoninen模型、Hopfield模型和EGNOS模型)进行误差分析,代入气象元素及测站位置误差,得出各模型的ZTD估值受误差影响的程度。使用C++语言实现以上3种模型,选取一系列不同纬度和高程的IGS站,利用IGS分析中心提供的气象文件,结合测站时空信息,导入程序进行模拟计算,并与IGS对流层产品进行比较,对改正模型进行质量评价。结果表明,Saastamoninen模型和Hopfield模型能够较准确地根据地面气象资料反映对流层延迟的日变化,Saastamoninen模型的改正精度略高于Hopfield模型;同时,无需实测气象资料的EGNOS模型RMS小于0.1 m,也可满足GNSS m级定位需求。  相似文献   

12.
???????????48??IGS?2009-2011??????????????????ZTD?????????????EGNOS???????ZTD???????????????????????1??????????????????IGS?????ZTD??EGNOS???????ZTD???????????????-0.18 cm??5.98 cm?????й?????????0.81 cm??6.13 cm??2????????????????????????仯????????????????^??С??????????????????????С??3????????????????γ?????仯???????????????????????????γ????????????????????????????????γ????????????????????仯????С??4:???????????γ?????????????????????????????????仯?????  相似文献   

13.
利用2010~2012年的IGS天顶对流层延迟(ZTD)序列、ERA5格网数据积分ZTD序列,在中国4个VLBI站点上对目前常用的经验模型进行优化,分别建立Local_ERA和Local_ZTD模型。基于2013~2014年IGS并址站点ZTD数据,将改进后的2种模型与全球GPT2w模型、SHAO-Gm模型进行对比。结果表明,改进后的Local_ERA、Local_ZTD模型精度相近,相对于GPT2w、SHAO-Gm模型平均精度在4个VLBI站点上都有提高,尤其在水汽季节性变化较强的北京站改进效果明显;其中Local_ERA平均精度略高于Local_ZTD,比GPT2w模型精度提高7.90%,比SHAO-Gm模型精度提高21.26%。  相似文献   

14.
???????GPS/GLONASS?????????λ????????????????????????GPS???????λ??????????????????ж?????IGS?????????????????ο?????????????????????????λ???й??????????IGS???????????????????????????????????????????????????????????????λ???????????????????GPS??????GPS/GLONASS??????????????IGS??????????á?  相似文献   

15.
?????????????????????ZTD????????????????????£???????????????????????????????????????????????ZTD???????????????????????????ZTD???н?????????????????????????????????????????ZTD?????????????б????????????????????????в???AR?????и???????????????????????????????AR??????ZTD??????????????????????????μ??????????cm????  相似文献   

16.
通过分析由ERA-Interim气象再分析资料积分方法得到的天顶对流层总延迟随高程变化的规律,提出一种基于垂直剖面函数的天顶对流层延迟(ZTD)插值算法。该算法以ZTD的垂直分布规律为基础,通过垂直剖面函数实现ZTD在高程方向上的精准投影延拓,可以避免因高差较大造成的空间内插结构畸形。采用IGS站提供的高精度对流层产品进行实验验证表明,该算法相对于传统算法能够有效提高ZTD改正值的精度,尤其在高差超过1 km的情况下,相对于反距离加权法精度提升了96%,相对于空间回归法精度提升了79%。  相似文献   

17.
?????????????GNSS??????λ????????????????????????????????????????????о??????????????????????????????UNB3m??EGNOS??SHAO??????????????????????????????????????????????????3??IGS???GPS?????????????????????????????????  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号