首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
内蒙古中部MODIS植被动态监测分析   总被引:12,自引:0,他引:12  
对中分辨率成像光谱仪(MODIS)250m空间分辨率的每8天NDVI卫星遥感数据,利用年平均NDVI及一元线性回归方法,分析了2000-2008年内蒙古中部地区植被变化趋势。结果表明,近9年内蒙古中部地区79.60%地区的植被总体上保持稳定,17.33%的地区得到了明显改善,3.06%的地区仍存在较强的退化或沙化趋势。退化或沙化地区主要分布在内蒙古农牧交错带北部边缘,成条带状分布,反映了农牧交错带地区生态仍然较为脆弱,需要进一步关注和保护,东南部地区的植被恢复明显。植被年际动态主要受该地区暖干化气候影响,气候变暖造成植被NDVI增加,而降水波动导致NDVI随之变化,降水的作用是气温的2.8倍,有些地区可达到11倍之多。  相似文献   

2.
利用2016年中国大陆构造环境监测网络的GNSS数据开展水汽短时频域特征研究,按气候类型将中国大陆地区划分为5个区域,并在每个区域中随机抽取若干个站点采用快速傅里叶变换方法进行分析,提取不同季节的GNSS水汽周期特征。结果表明,各类站点的水汽频域特征存在明显的区域性变化和季节性差异;高原山地气候、热带季风气候和亚热带季风气候类型的GNSS站点的周期性变化显著;热带季风地区、亚热带季风地区及沿海地区水汽振幅较大,高原山地和温带大陆地区水汽振幅较小。  相似文献   

3.
植物生长季的变化反映了全球气候变化对生态环境的影响。本研究以2000-2006年间MODIS-NDVI影像数据集,使用TIMESAT软件从归一化植被指数(NDVI)时间序列中,分别提取福建省不同森林植被的生长季开始日期(Start of Season,SOS)、生长季结束日期(End of Season,EOS)和生长季长度(Length of season,LOS)等物候参数,并与全省尺度的气温与降水量进行相关分析。结果表明:不同森林类型NDVI与当月月均气温之间具有较显著的相关性(R2为0.72-0.79,p<0.01),同期温度变化对植被生长的影响相对于降水量更重要;而植被生长对降水量的响应存在大约2个月的时滞效应(R2为0.54-0.75,p<0.01),说明前期的降水累积对于后续植被生长有较显著影响。福建省森林植被生长季持续时间约213~223 d,开始于每年4月初到4月中旬(第98~103 d),结束于11月中旬前后(第316~321 d)。其中,南亚热带森林生长季长于中亚热带森林,相同气候条件下的阔叶林生长季时间略长于针叶林。另外,春季(2-4月)气温变化是导致福建省内2个气候带森林生长季开始时间、生长季结束时间及生长季长度变化的关键因素,而伴随春季温度升高,植被生长季开始时间提前(R2为0.83,p<0.01),同时生长季长度延长(R2为0.80,p<0.01)。7 a间,生长季持续时间呈现微弱延长趋势,总体延长幅度为2.4~3.1 d。  相似文献   

4.
中国北方草原区生产力在区域碳水循环、农牧业发展中举足轻重。归一化植被指数(Normalized Difference Vegetation Index,NDVI)广泛应用于生产力的计算,然而目前来源众多的NDVI数据反映中国北方草原植被时空动态的一致性仍未可知。本研究利用2000—2015年3个来源NDVI数据集(MODIS NDVI、GIMMS NDVI和SPOT NDVI)并以国际上公认的数据准确性较高的MODIS NDVI为基准对比分析了中国北方草原区NDVI时空动态的一致性,并选取适宜的NDVI产品揭示研究区NDVI长期的时空格局。结果表明:整个中国北方草原区以及部分草原类型(高寒草甸、高寒草原、高寒荒漠、温带荒漠草原)GIMMS NDVI和MODIS NDVI 2套数据集无论是数值范围,还是年际波动和变化趋势具有较高一致性(二者在高寒草甸、高寒草原、高寒荒漠、温带荒漠草原的相关系数分别为0.60、0.47、0.51、0.74),而SPOT NDVI数值远高于其他2个数据集,尤其是在青藏高原草原区,SPOT NDVI数值每年较另外两套数据集约偏高0.15,表明该区域使用SPOT数据应慎重。部分温带草原类型(典型草原和草甸草原)GIMMS NDVI和SPOT NDVI数据集在年际波动以及变化趋势上具有较高的一致性(相关系数分别为0.85和0.60),但温带草原区3种数据集NDVI数值范围整体相差不大,小于0.06。基于上述结果,本研究进一步采用时间序列最长且与MODIS NDVI一致性最好的GIMMS NDVI分析了研究区NDVI的时空动态,发现1982—2015年中国北方草原区NDVI整体呈增加趋势,25%的区域达显著水平(p<0.05),主要集中在温带草原区;高寒草原区NDVI大部分区域变化不显著且有一定比例的区域NDVI呈显著下降趋势。本研究可以为模型数据集选择和预测中国北方草原区植被对未来气候变化的响应提供科学依据。  相似文献   

5.
Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging Spectroradiometer(MODIS) Normalized Difference Vegetation Index(NDVI) data and meteorological data(temperature and precipitation) from 2001 to 2012, the trend of vegetation dynamics were examined in the Ziya-Daqing basins, China. The path analysis was used to obtain the information on the relationships among climatic factors and their effects on vegetation growth. It was found that the trends of growing season NDVI were insignificant in most plain dry land, while the upward trends were significant in forest, grass and dry land in Taihang Mountains. According to the path analysis, in 23% of the basins the inter-annual NDVI variation was dominated by the direct effect of precipitation, in 5% by the direct effects of precipitation and temperature, and in less than 1% by the direct effect of temperature or indirect effects of these two climatic factors. It indicated that precipitation significantly affected the vegetation growth in the whole basins, and this effect was not regulated by temperature. Precipitation increase(especially in July, August and September) was favorable to greenness enhancement. Summer temperature rising showed negative effect on plant productivity enhancement, but temperature rise in April was beneficial for the vegetation growth. When April temperature increases by 1℃, the onset date of greenness for natural vegetation will be 2 days in advance. There was a lag-time effect of precipitation or temperature on monthly NDVI for all land use types except grass.  相似文献   

6.
新疆NDVI时空特征及气候变化影响研究   总被引:1,自引:0,他引:1  
基于新疆50个气象测站2003-2010年逐日降水、气温资料,结合逐月归一化植被覆盖影像资料,利用趋势分析、R/S分析、模糊C均值聚类、图像处理等方法,系统分析了全疆NDVI时空变化特征及其可持续性,并探究NDVI与气候因子(气温、降水)之间的相关性。研究表明:植被覆盖及气象因子年际间差异不大,呈现出整体稳定的态势,但年内变化明显。北疆/天山北坡水热条件优良、植被长势最好,且植被长势对气候因子的滞后效应并不明显且滞后时间短。天山南坡/天山东段次之,而南疆植被覆盖程度最差,南疆/天山南坡植被长势对气候因子(降水、气温)存在明显的滞后效应,植被生长受气温、降水限制性更大,且气温作为主要因子,对天山南坡植被生长的限制作用表现得更为突出。总体上,新疆植被覆盖呈持续性变化,现有植被覆盖情况基本保持不变,但呈退化趋势的面积大于得到改善的面积,在一定程度上与人类活动有很大关系,探查植被长势的变化趋势并及时做出相应调整,不仅能为新疆地区的植被保护以及植被恢复工作提供一定的科学依据,更能够为合理有效地安排农作物生产提供重要的理论指导。  相似文献   

7.
Global climate change is having long-term impacts on the geographic distribution of forest species. However, the response of vertical belts of mountain forests to climate change is still little known. The vertical distribution of forest vegetation(vertical vegetation belt) on Gongga Mountain in Southwest China has been monitored for 30 years. The forest alternation of the vertical vegetation belt under different climate conditions was simulated by using a mathematical model GFSM(the Gongga Forest Succession Model). Three possible Intergovernmental Panel on Climate Change(IPCC) climate scenarios(increase of air temperature and precipitation by 1.8℃/5%, 2.8℃/10% and 3.4℃/15% for B_1, A_1B and A_2 scenarios, respectively) were chosen to reflect lower, medium and higher changes of global climate. The vertical belts of mountainous vegetation will shift upward by approximately 300 m, 500 m and 600 m in the B_1, A_1B and A_2 scenarios, respectively, according to the simulated results. Thus, the alpine tree-line will move to a higher altitude. The simulation also demonstrated that, in a changing climate, the shift in the vegetation community will be a slow and extended process characterized by two main phases. During the initial phase, trees of the forest community degrade or die, owing to an inability to adapt to a warmer climate. This results in modest environment for the introduction of opportunistic species, consequently, the vegetation with new dominant tree species becomes predominant in the space vacated by the dead trees at the expense of previously dominated original trees as the succession succeed and climate change advance. Hence, the global climate change would dramatically change forest communities and tree species in mountainous regions because that the new forest community can grow only through the death of the original tree. Results indicated that climate change will cause the change of distribution and composition of forest communities on Gongga Mountain, and this change may enhance as the intensity of climate change increases. As a result, the alternation of death and rebirth would finally result in intensive landscape changes, and may strongly affect the eco-environment of mountainous regions.  相似文献   

8.
The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climate since the hydrological year (HY) 2003. Daily and flexible multi-day combinations from the HY 2003 to 2014 were produced using Moderate Resolution Imaging Spectroradiometer (MODIS) from Terra and Aqua remote sensing satellites for the snow cover products in the three basins including the Nenjiang River Basin (NJ), Downstream Songhua River Basin (SD) and Upstream Songhua River Basin (SU). Snow cover duration (SCD) was derived from flexible multiday combination each year. The results showed that SCD was significantly associated with elevation, and higher SCD values were found out in the mountainous areas. Further, the average SCDs of NJ, SU and SD basins were 69.43, 98.14 and 88.84 d with an annual growth of 1.36, 2.04 and 2.71 d, respectively. Binary decision tree was used to analyze the nonlinear relationships between SCD and six impact factors, which were successfully applied to simulate the spatial distribution of depth and water equivalent of snow. The impact factors included three topographic factors (elevation, aspect and slope), two climatic factors (precipitation and air temperature) and one vegetation index (Normalized Difference Vegetation Index, NDVI). By treating yearly SCD values as dependent variables and six climatic factors as independent variables, six binary decision trees were built through the combination classification and regression tree (CART) with and without the consideration of climate effect. The results from the model show that elevation, precipitation and air temperature are the three most influential factors, among which air temperature is the most important and ranks first in two of the three studied basins. It is suggested that SCD in the mountainous areas might be more sensitive to climate warming, since precipitation and air temperature are the major factors controlling the persistence of snow cover in the mountainous areas.  相似文献   

9.
1INTRODUCTIONMandelbrot stated the uncertainty of the length of a coastline in his paper "How long is the coast of Britain? Statistical self-similarity and fractional dimension" pub- lished in Science in 1967 (MANDELBROT, 1967). The concepts of fractal and fractal dimension were presented for the first time in that paper and have been applied to quantitatively describing the difference of crooked coastlines of British and South Africa. Compared with the Euclidean geometry with more…  相似文献   

10.
We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones: (1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and (2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarsescale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetationgeoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.  相似文献   

11.
The complex spatiotemporal vegetation variability in the subtropical mountain-hill region was investigated through a multi-level modeling framework. Three levels - parcel, landscape, and river basin levels- were selected to discover the complex spatiotemporal vegetation variability induced by climatic, geomorphic and anthropogenic processes at different levels. The wavelet transform method was adopted to construct the annual maximum Enhanced Vegetation Index and the amplitude of the annual phenological cycle based on the 16-day time series of a5om Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index datasets during 2OOl-2OlO. Results revealed that land use strongly influenced the overall vegetation greenness and magnitude of phenological cycles. Topographic variables also contributed considerably to the models, reflecting the positive influence from altitude and slope. Additionally, climate factors played an important role: precipitation had a considerable positive association with the vegetation greenness, whereas the temperature difference had strong positive influence on the magnitude of vegetation phenology. The multilevel approach leads to a better understanding of the complex interaction of the hierarchical ecosystem, human activities and climate change.  相似文献   

12.
Based on the fractal theory, the spatial structure of China's vegetation has been analyzed quantitatively in this paper. Some conclusions are drawn as the following. 1) The relationships between size and frequency of patch area and patch shape index exist objectively for China's vegetation. 2) The relationships between perimeter and area exist objectively for China's vegetation. 3) The fractal dimension of evergreen needleleaf forests on mountains in subtropical and tropical zones is the largest, while the smallest for deciduous broadleafand evergreen needleleaf mixed forests in temperate zone, reflecting the most complex spatial structure for evergreen needleleaf forests on mountains in subtropical and tropical zones and the simplest for deciduous broadleaf and evergreen needleleaf mixed forests in temperate zone. 4) The fractal dimensions of China's vegetation types tend to decrease from thc subtropics to both sides. 5) The stability of spatial structure of deciduous broadleaf and evergreen needleleaf mixed forests in temperate zone is the largest, while the smallest for double-cropping rice, or double-cropping rice and temperate-like grain, and tropical evergreen economic tree plantations and orchards, reflecting the steadiest for deciduous broadleaf and evergreen needleleaf mixed forests in temperate zone and the most unstable for double-cropping rice, or double-cropping rice and temperate-like grain, and tropical evergreen economic tree plantations and orchards in spatial structure. 6) The stability of spatial structure of China's vegetation tends to decrease from the temperate zone to both sides, it is significantly pertinent to understand the formation, evolution, dynamics and complexity rule of ecosystem of vegetation.  相似文献   

13.
The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.  相似文献   

14.
In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.  相似文献   

15.
Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and climate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the ‘core’ pixels were extracted to represent the most possible burned pixels based on the comparison of the temporal change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre- and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the ‘core’ pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre- and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the highest accuracy of 96.61%.  相似文献   

16.
随着我国城市化进程的加快,城市热岛难显缓解之势,有关土地利用/覆盖类型、城市规模、城市形态对城市热岛的影响已有较多研究,尚缺少气候背景对我国城市昼夜地表热岛强度的影响研究。本文通过长时序的MODIS地表温度数据,从年均、季节和昼夜3个时间尺度,从全国、气候带、城市3个空间尺度探讨了我国347个城市昼夜地表热岛强度的空间分布特征以及时间变化规律。结果表明:① 昼夜差异:我国城市年均地表热岛强度白天(1.25±0.81 ℃)高于夜晚(0.79±0.43 ℃);② 季节差异:昼夜地表热岛强度在不同季节表现不同,白天表现为夏季高,冬季弱,夜晚四个季节差异不大;③ 气候带差异:昼夜地表热岛强度分布呈现明显的空间分异。白天地表热岛强度表现为热带及亚热带地区高于温带及高原地区,其中南亚热带表现为最强,高原气候区最弱;夜晚则表现为温带高于亚热带、热带及高原地区,其中中温带最强,北亚热带最弱;④ 时空变化:白天地表热岛强度年际呈非显著下降趋势(|Z|<1.96),而夜晚呈显著上升趋势(|Z|>1.96);昼夜地表热岛强度年际变化存在季节差异,白天地表热岛强度夏季上升趋势显著高于其他季节,夜晚四个季节都呈显著上升趋势,其中冬季地表热岛强度上升趋势最大;白天呈显著上升趋势的城市主要分布在热带及南亚热带地区,夜晚呈显著上升趋势的城市广泛分布在中温带和暖温带。  相似文献   

17.
冬半年南支槽的气候特征分析   总被引:1,自引:0,他引:1  
为了解冬半年南支槽的气候特征,定义了一个冬半年南支槽的强度指数,南支槽强度指数值越大,表示该年南支槽比较弱,反之亦然。采用经验正交函数分解(EOF)、小波分析、Mann-Kendal检验等方法,研究了南支槽的年际、年代际变化异常以及时空特征。分析结果表明,随着南支槽强度指数的整体上升,其强度总体呈现减弱的趋势。南支槽在20世纪50~70年代明显偏强,此现象持续到1976年,之后开始逐渐减弱,至今一直处于偏弱状态。对南支槽强度指数做EOF分解,仅第一模态的方差贡献就达80.29%,故南支槽的变化特征大多数年呈第一模态的分布特征,相应的时间权重系数存在明显的年际和年代际变化,且具有长期正趋势,表明南支槽减弱的趋势越来越显著。  相似文献   

18.
Quantification of greenhouse gases[nitrous oxide(N2O)and methane(CH4)]and nitric oxide(NO)emissions from subtropical conventional vegetable systems through multi-site field measurements are needed to obtain accurate regional and global estimates.N2 O,NO and CH4 emissions from subtropical conventional vegetable systems were simultaneously measured at two different sites with hilly topography in the Sichuan basin,southwest China by using the static chamber gas chromatography technique.Results showed that annual soil N2O and NO fluxes for the treatment receiving N fertilizer ranged from 6.34-7.71 kg N ha-1 yr-1 and 0.69-0.85 kg N ha-1 yr-1,respectively,while decreased soil CH4 uptakes by 26.4%as compared with no N fertilizer addition across our two sites of experiment.Overall,the average direct N2 O and NO emission factor(EFd)were 0.71%and 0.12%,respectively,which were both lower than the available EFd for subtropical conventional vegetable systems.This finding indicates that current regional and global estimates of N2O and NO emissions from vegetable fields are likely overestimated.Background N2O emissions(3.42-3.62 kg N ha-1 yr-1)from the subtropical conventional vegetable systems were relatively high as compared with available field measurements worldwide,suggesting that background N2O emissions cannot be ignored for regional estimate of N2O emissions in subtropical region.Nevertheless,the significantly intra-and inter-annual variations in N2O,CH4 and NO emissions were also observed in the present study,which could be explained by temporal variations of environmental variables(i.e.soil temperature and moisture).The differences in N2O and NO EFd and CH4emissions between various vegetable systems in particular under subtropical conditions should be taken into account when compiling regional or global inventories and proposing mitigation practices.  相似文献   

19.
在全球气候变化背景下,植被动态变化以及植被对气候变化的响应方式已经成为生态学和地理学领域的热点。本文对比分析了南方亚热带季风区将乐县不同类型森林植被对不同时间尺度的干旱响应的差别。基于2000-2017年MODIS-EVI数据及气象站点数据,用最大值合成法、趋势分析法以及相关分析法,分析了森林植被及气象因子的动态变化特征,并对比不同森林植被对气候变化响应的差别。研究表明:① 2000-2017年,研究区植被覆盖度、EVI和降水均显著增加,区域内湿度增加,森林长势渐趋良好;② EVI在生长季初期和末期与同期的降水、温度均显著正相关(P<0.1),初期森林受降水因子的影响更大,末期受温度因子的影响大;③ 1-3月和周年的气候变化对森林的生长至关重要,长时间尺度的湿度增加对森林生长具有显著的促进作用,SPEI的时间尺度越长与EVI的相关性也越大;④ 针阔混交林与同期温度、降水的相关系数最高,并且与不同时间尺度的SPEI相关性均比较高,属于气候敏感型林型,在生产经营中要谨慎预防气候变化对该林型带来的伤害;⑤ 森林覆盖度变化与降水和SPEI_24的相关性极显著,长时间尺度的降水变化是影响森林植被覆盖率变化的重要因素之一。  相似文献   

20.
基于Google Earth Engine的红树林年际变化监测研究   总被引:1,自引:0,他引:1  
遥感技术已广泛应用于红树林资源调查与动态监测中,但仍然存在遥感数据获取困难、数据预处理工作量大、监测时间长而周期过大等问题,影响了学者对红树林演变过程的精细刻画与理解。本文基于Google Earth Engine(GEE)云遥感数据处理平台,选取Landsat系列卫星数据,生成长时间序列年际极少云影像集(云量少于5%),利用3个红外波段反射率(NIR、SWIR1、SWIR2)和3个特征指数(NDVI、NDWI、NDMI)建立阈值规则集,实现对实验区越南玉显县红树林、红树林-虾塘、不透水面-裸地、水体4种目标地物的专家知识决策树分类和土地覆盖的制图,并基于分类结果监测该区域1993-2017年的红树林年际动态变化。结果表明:GEE平台可满足多云多雨地区红树林的长时间序列年际变化监测需求;本文阈值分类方法可以有效提取红树林及红树林-虾塘,实验区有86%年份的影像分类精度达到80%以上;年际变化监测可精细刻画实验区红树林面积先增后减再增的变化过程,也能准确反映红树林与红树林-虾塘养殖系统面积之间的负相关关系。红树林年际动态监测结果可以降低红树林演变分析的不确定性,并能更精细地量化红树林与其他土地覆盖类型的转化过程,从而评估经济发展、政策等因素对红树林演变的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号