首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.  相似文献   

2.
Ma  Yanyan  Li  Guangxue  Ye  Siyuan  Zhang  Zhiheng  Zhao  Guangming  Li  Jingyang  Zhou  Chunyan  Ding  Wenjie  Yang  Xin 《中国海洋湖沼学报》2010,28(6):1362-1370
The water and sediment discharge regulation (WSDR) project, which has been performed since 2002 before flood season every year, is of great significance to the river management in China. Until 2007, six experiments have been fulfilled to evaluate the effect of the project on the natural environment. To fill the gap of investigations, a study on flood and suspended sediment transportation and channel changing along the distributary channel of the Huanghe (Yellow) River was conducted during the WSDR project period in 2007. The lower channel was scoured rapidly and the channel became unobstructed gradually several days after the flood peak water was discharged from the Xiaolangdi Reservoir. Within four days after the flood peak at 3 000 m3/s entered the distributary, the channel in the river mouth area was eroded quickly. Both the mean values of area and depth of the main channel were tripled, and the maximum flood carrying capacity increased to 5 500 m3/s or more. Then, the river channel was silted anew in a very short time after completion of the WSDR. Favored by the WSDR project, the river status in April 2008 became better than that of the year before. The adjustment ranges of main channel parameters were about 30%, 10%, and 10% at sections C2, Q4, and Q7, respectively. The process of rapid erosion-deposition was more active 15 km away in the channel from the river mouth due to the marine influence. It is reasonable for discharging sediment at concentration peak from Xiaolangdi Reservoir at the end of the flood peak. As a result, the sediment peak reached the river mouth about two days later than that of the water current. In addition, the WSDR project has improved the development of the estuarine wetland. Wetland vegetation planted along the river banks restrained the water flow as a strainer and improved the main channel stability. It is suggested to draw water at mean rate of 150 m3/s from the Huanghe River during flood periods, because at the rate the water in the wetland would be stored and replenished in balance. Moreover, we believe that cropland on the river shoal of the lower Huanghe River should be replaced by wetland. These activities should achieve the Huanghe River management strategy of “To concentrate flow to scour sediment, stabilize the main channel, and regulate water and sediment”.  相似文献   

3.
With the combination of historical data, field observations and satellite remotely sensed images(Landsat TM/ETM and CBERS), changes in Huanghe (Yellow) River estuary since 1996 when artificial Chahe distributary was built up were studied, mainly including water and sediment discharge from the river, tides, tidal currents, suspended sediment diffusion, coastline changes and seabed development. During following six and half years (up to the end of 2002), runoff and sediment loads into the river mouth declined dramatically. At the beginning of the re-routing, abundant sediment loads from the river filled up nearshore shallow water areas so that the newborn delta prograded quickly. With rapid decrease of sediment loads transported to the estuary, the delta retrograded. In 1997, subaerial tip of the abandoned delta receded 1.5km; its annual mean recession rate was about 150 m in following years. In addition, marine dynamic condition near the artificial outlet had also changed. Under the interaction of ocean and river flow, most of incoming sediment loads deposited in the vicinity of the outlet. Seabed erosion occurred at the subaqueous delta front. Between 1999 and 2002, erosion thickness averaged at 0.3 m in the subaqueous delta of 585.5 km2.  相似文献   

4.
The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world's 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea l  相似文献   

5.
The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen‘s test. In both the upper reaches (Xiaohekou) and the lower reaches (Xiaohuangguayuan), the sediment fluxes showed a significant increase from 1970 to 2001, despite the fact that the water discharge did not change significantly during the period and numerous reservoir constructions which contribute to the trap of sediment. This can be attributed to the intensification of human activities, especially the activities related to land surface disturbances such as deforestation and afforestation, expansion of agriculture land, and road constructions. This increase is more significant in the lower reaches of the river observed at the place of Xiaohuangguayuan due to the dry-hot climate. The profound increase in sediment flux has significant implications for effective management of the sedimentation problems of the on-going Three Gorges Reservoir.  相似文献   

6.
In the river systems, the environmental change always undergoes a process from quantitative to qualitative change. The upper limit of the qualitative change is called threshold. When the process reaches or goes beyond the limit, the original event series will be replaced by the other event series. Investigations show that the evolution of the Huanghe River alluvial fan and delta has also under gone a process from quantitative to qualitative change. The geometric forms in each process are roughly the same. This threshold of the geometric forms not only provides us a quantitative index for plotting the periodicity of the alluvial fan and delta, but also is of importance for estimation of the trend of natural environmental change.It is shown that there are three periodic alluvial fans of the Huanghe River since the middle Holocene and four periodic delta since 1855 A.D., the thresholds of their geometric forms are from 0.93 to 0.94 and from 1.2 to 1.21 respectively.The changing trend in the past and the na  相似文献   

7.
Detrital minerals of 137 offshore and 22 river sediment samples collected from Qingdao coastal areas have been analyzed. Four mineral assemblage provinces can be classified by Q-mode cluster analysis. Factor analysis identifies two major factors that account for the total variability in most common minerals: 1) based on the relationship of quartz, hornblende, actinolite, micas, and authigenic pyrite, 41.55% of the variability is related to sediment sources; 2) based on the relationship of epidote, garnet, sphere, and ilmenite, 23.21% can be related to strong hydrodynamic conditions that control transport and sedimentation. By comparing mineral compositions of river waters in the study area, the following four mineral provenances can be identified. The Qingdao-Laoshan nearshore area has a quartz-feldspar-epidote-hornblende-limenite-limonite-sphene assemblage, which is largely attributed to relict sediment and coastal erosion. The Jimo-Haiyang nearshore area has a quartz-feldspar-hornblende-epidote-limonite-mica-actinolite assemblage, derived largely from the Wulong River and Rushan River, and is also affected by the Huanghe River, while the Qianliyan Island area in the deeper offshore area separated by a mud belt has a similar assemblage. The Haiyang-Rushan nearshore area has a quartz-feldspar-hornblende-epidote-micas-limonite assemblage, indicating multiple sources from the Rushan River, the Wulong River, the Huanghe River, and coastal erosion. The central area, located in an eddy center, has a mica-authigenic pyrite-hornblende-quartzfeldspar assemblage, indicating multiple sources dominated by Huanghe River distal sediments.  相似文献   

8.
1INTRODUCTION Physiognomycharacteristicofawatershedisasymbolof ground erosion and incision, and it has been one of the most important factors influencing soil erosion and sedi- ment in the drainage area. Therefore physiognomy char- acteristic of the watershed and its influences on hydro- logical bed load have been one important focus in the watershed research both domestic and abroad (SCHUMM, 1977; QIAN et al., 1987) since the classical study by Horton in 1942 (HORTON, 1954). In rec…  相似文献   

9.
The extra sediment load induced by typhoons and rainstorms in the Heshe River,Taiwan,are the principal reason for severe sediment-related disasters.The total sediment load during Typhoon Morakot in 2009 was 31 × 106m3,accounting for 95% of the annual sediment discharge.Large amounts of sediment load entered the Hoshe River,causing the braiding index(BI) to increase.Subsequently,the BI became positively correlated with the channel width in the Hoshe River.The specific typhoon and rainstorm events decreased after Typhoon Morakot,the sediment input decreased,inducing the fluvial morphology of the braided river to develop into a meandering river.The extra sediment load induced the deposition depth to increase and produce a headward deposition in the main channel and its tributaries.In addition,the river bend and the topographical notch restrained the sediment from moving downstream and being stored locally,indirectly increasing the erosion density of the river banks from 2.5 to 10.5 times.  相似文献   

10.
Sediment grain size parameters and the percent of sand and clay near the Huanghe River Delta are used to estimate the Huanghe Riser load diffusion with fuzzy analysis. The results are confirmed by field investigation and the landform changes of the river estuary and sediment diffusive pattern indicated by Landsat MSS, TM images.  相似文献   

11.
The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation.  相似文献   

12.
Application of swat model in the upstream watershed of the Luohe River   总被引:6,自引:0,他引:6  
1INTRODUCTIONIntheHuanghe(Yellow) Riverbasin, soilerosionisaseriousproblem,whilerunoffandsedimentyieldsim-ulation hasnotbeenextensivelystudiedonthebasisofGIS(GeographicInformationSystem) and dis-tributedhydrologicalmodel.Inthisstudy,theLushiwatershed,whichislocatedattheupstreamoftheLushiHydrologicalStationintheLuoheRiver—thebiggesttributary oftheHuanghe Riveranddown-streamofXiaolangdiDam,isselectedasthestudyarea.ThelevelofsoilerosioninLushiwatershedismoderatein theHuangheRiverbas…  相似文献   

13.
INTRODUCTIONTidalchannelsareimportantgeomorphologicunitsalongsiltcoasts.Theyhaveanevidentfunc tionfortidalflatbecausetheyareassociatedwithitsrapidbayheadwarderosionandlateralswing ing.Thetidalchannelsdevelopalongthecoastandplayanimportantroleinseaandlandinterac tion .Manyscientistsresearchedthetidalchannels (Bayliss Smith ,1 978;Shao ,1 988;Zhang ,1 995) .TheScientificandTechnicalCommitteeofShandongProvince (1 991 )investigatedthecoastoftheHuanghe (Yellow)RiverDeltaandresearchedtheti…  相似文献   

14.
Global carbon cycling is a significant factor that controls climate change.The centennial-scale variations in total organic carbon(TOC)contents and its sources in marginal sea sediments may reflect the influence of human activities on global climate change.In this study,two fine-grained sediment cores from the Yellow Sea Cold Water Mass of the South Yellow Sea were used to systematically determine TOC contents and stable carbon isotope ratios.These results were combined with previous data of black carbon and (210)~Pb dating from which we reconstructed the centennial-scale initial sequences of TOC,terrigenous TOC(TOC_(ter))and marine autogenous TOC(TOC_(mar))after selecting suitable models to correct the measured TOC(TOC_(cor)).These sequences showed that the TOC_(ter) decreased with time in the both cores while the TOC_(mar) increased,particularly the rapid growth in core H43 since the late 1960s.According to the correlation between the Huanghe(Yellow)River discharge and the TOC_(cor),TOC_(ter),or TOC_(mar),we found that the TOC_(ter) in the two cores mainly derived from the Huanghe River and was transported by it,and that higher Huanghe River discharge could strengthen the decomposition of TOC_(mar).The newly obtained initial TOC sequences provide important insights into the interaction between human activities and natural processes.  相似文献   

15.
All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.  相似文献   

16.
Li He 《山地科学学报》2018,15(5):1057-1070
Predicting the responses of an alluvial channel to changes in flow and sediment supply is essential for engineering design. Many methods have been developed in the last few decades to describe sectional bankfull characteristics (elevation and discharge); however, studies on long-term reach-scale bankfull discharge are still limited. In this study, a hydraulic model is built to calculate the reach-scale bankfull discharge, and the effects of reservoir building on downstream bankfull discharges are discussed. The studied river reach is located at the lower Wei River (WR), where the planned Dongzhuang Reservoir would be built on its largest tributary, the Jing River. A quasi-two-dimensional numerical model coupled with a bankfull discharge estimating method is put forward to calculate the reach-scale bankfull discharge. The soundness of the model is verified. Results show that the temporal variation of reach-scale bankfull discharge of the lower reach of the WR would be highly influenced by the planned reservoir, especially during the first 20 years of operation. The effect of the planned reservoir on bankfull discharge may reach its maximum when the total trapped sediment load reaches approximately 75% of the reservoir capacity. Our results show that after the first 17 years of operation, the effect of the planned reservoir on bankfull discharge of the river reach may decrease gradually. The soundness and predictive capability of the coupled model have also been calibrated by comparing with existing reservoirs. All analyses indicate that the numerical model can be used to predict the changed reach-scale bankfull discharge of the lower WR.  相似文献   

17.
Based on the field surveys and repeated cross-profile observations combined with the comparison of many years’ topog-raphic maps,this study shows the spatial variability and varying patterns of coastal erosion along the west coast of the Taiwan Strait.Regional differentiation in the Meso-Cenozoic coastal tectonics determined the irregular coastline and geological background for large-scale coastal erosion distribution.The intensity of coastal erosion on the west side of the Taiwan Strait is mild in the nort...  相似文献   

18.
In an estuary,tidal,wave and other marine powers interact with the coast in different ways and affect estuary morphology as well as its evolution.In the Huanghe(Yellow) River estuaries and nearby delta,there are many small sediment-affected estuaries with a unique morphology,such as the Xiaoqing River estuary.In this study,we investigated the special evolution and genetic mechanism of the Xiaoqing River estuary by analyzing graphic and image data with a numerical simulation method.The results show that NE and NE-E tide waves are the main driving force for sandbar formation.Sediment shoals have originated from huge amounts of sediment from the Huanghe River,with consequent deposition at the Xiaoqing River mouth.The lateral suspended sediments beyond the river mouth move landward.Siltation takes place on the northern shoreline near the river mouth whereas erosion occurs in the south.The deposits come mainly from scouring of the shallow seabed on the northern side of the estuary.Storm surges speed up deposition in the estuary.Development of the sediment shoals has occurred in two steps involving the processes of growth and further southward extension.Although the southward shift increases the river curvature and length,the general eastward orientation of the estuary is unlikely to change.Processes on the adjacent shorelines do not affect the development of the sediment shoals.The study presents a morphodynamic evolutionary model for the Xiaoqing River estuary,with a long-term series cycle,within which a relatively short cycle occurs.  相似文献   

19.
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.  相似文献   

20.
GEOCHEMICAL CHARACTERISTICS OF PHOSPHORUS NEAR THE HUANGHE RIVER ESTUARY   总被引:5,自引:0,他引:5  
INTRODUCTIONPhosphorus (P)isanimportantlimitingelementinglobaloceanicproductivity (Holland ,1 978) ,soknowledgeofPisakeytobetterunderstandingofthecyclingofcarbon ,nitrogen,sulfur,andothernu trientelements.Inasimplemassbalancemodel,thelevelofdissolvedPintheoceanisafunctionoftherateofinputviarivers,andtherateofoutputviadepositioninsediments.Inthepresentstudy,thefocusisontheriverinePinputbytheHuangheRiver (YellowRiver)totheBohaiSea,andespeciallyontheamountofPsolubilizedfromsolidphasesupo…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号