首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Experiments were conducted to examine the effects of salinity fluctuation frequency on the osmolarity, Na+-K+-ATPase activity and HSP70 of Chinese shrimp Fenneropenaeus chinensis with initial wet body weight of 1.460 g ± 0.091 g. The salinity in the control group (D0) was 28 throughout the experiment, whereas treatments D2, D4, D6 and D8 were subjected to different salinity fluctuation frequencies of 2, 4, 6 and 8 d, respectively. The salinity in treatments D2, D4, D6 and D8 was kept at 28 for 2, 4, 6 and 8 d, respectively, decreased abruptly to salinity 24, lasted for another 2 d, and then was raised to its initial value 28. This was a complete salinity fluctuation cycle that afterwards repeated itself. After 32 days, the osmolarity in treatments D2, D4, D6 and D8 was significantly lower than that in treatment D0 (P<0.05). There were significant differences in both muscle and eyestalks HSP70 expression among groups. The HSP70 expressions in muscle and eyestalks in group D4 were 61.4% and 57.0% higher, respectively, than that in the control group D0 (P<0.05). There were, however, no significant differences in gill or hepatopancreas Na+-K+-ATPase activity between the treatments and the control.  相似文献   

3.
Mercury (Hg) is one of the commonly encountered heavy metals, which is widespread in inshore sediments of China. In order to investigate the toxicity of Hg on marine invertebrates, we studied the effects of the divalent mercuricion (Hg2+) (at two final concentrations of 0.0025 and 0.0050 mg L−1, prepared with HgCl2) on metallothionein (MT) content, DNA integrity (DNA strand breaks) and catalase (CAT) in the gills and hepatopancreas, antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the hemolymph, gills and hepatopancreas of the portunid crab Charybdis japonica for an experiment period up to 15 d. The results indicated that MT was significantly induced after 3 d, with a positive correlation with Hg2+ dose and time in the hepatopancreas and a negative correlation with Hg2+ dose and time in the gills. While CAT in the hemolymph was not detected, it increased in the hepatopancreas during the entire experiment; SOD and GPx in the three tissues were stimulated after 12 h, both attained peak value and then reduced during the experimental period. Meanwhile, DNA strand breaks were all induced significantly after 12 h. These results suggested the detoxification strategies against Hg2+ in three tissues of C. japonica.  相似文献   

4.
Endosulfan, an organochlorine pesticide, is highly toxic and effective at controlling pests in agriculture, horticulture, and public health programs. In this study, static bioassays were used to evaluate the toxicity of endosulfan to freshwater prawns( Macrobrachium rosenbergii) of various lengths(1.5±0.03,4±0.08, and 7±0.06 cm). Additionally, the activities of peroxidase(POD), acid phosphatase(ACP),alkaline phosphatase, acetylcholinesterase(AChE), and Na + /K +-ATPase were analyzed to refl ect the effects of endosulfan exposure. The 96 h LC 50 of endosulfan for prawns 1.5, 4, and 7 cm long were 1.86, 4.53,and 6.09μg/L, respectively, improved tolerance to endosulfan with growth. The POD activities of test organisms exposed to low concentrations of endosulfan were inhibited, indicating the presence of oxygen damaged tissue. Moreover, a notable decrease in AChE activity was observed due to overstimulation of neurotransmission, which might result in abnormal behavior. The effect caused by endosulfan on phosphatase production in the hepatopancreas of prawns 1.5, 4, and 7 cm long was different because the ability of nonspecifi c immune regulation increased with growth. The 96 h LC 50 values obtained in this study could be used in the formulation of water-quality criteria in China. Moreover, the changes in enzymes activities of M. rosenbergii under stress of endosulfan could be applied in the establishment of early warning indicators for bio-safety.  相似文献   

5.
6.
To assess the toxicity of heavy metal pollution to marine intertidal shellfish, enzymatic responses and lipid peroxidation were investigated in the clam Mactra vereformis exposed to cadmium under laboratory conditions. Three antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx), two immune defense enzymes (acid phosphatase, ACP; alkaline phosphatase, ALP), and one lipid peroxidation product (malondialdehyde, MDA) were measured in the gills and the hepatopancreas of the ...  相似文献   

7.
The ion-transport enzyme activities were studied in the nauplii 1–2, zoea 1–3, mysis 1–3, and postlarva 1–7 of the shrimps Marsupenaeus japonicus and Fenneropenaeus chinensis. The results showed that total ATPase, Na+-K+-ATPase, and V-ATPase (V-type H+-ATPase) activities increased during the early development for both the species, from zero in nauplii to stable levels after zoea stage. The enzyme activities of the latter species were significantly higher than those of the former species after zoea stage (F>F 0.05). The contributions of Na+-K+-ATPase, V-ATPase and HCO3 -ATPase to the total ATPase activity of the two species varied in different developmental stages and accounted for 40%–70%, 22%–46% and 2%–13% in M. japonicus from zoea to postlarva stage, whilst the shares of them were 42%–69%, 28%–44% and 2.5%–22%, respectively in F.chinensis. These findings suggest the possible culture of the two species with varying water quality, especially the salinity and pH.  相似文献   

8.
The effects of various salinity fluctuation amplitudes (2, 4, 6 and 8) on the growth, osmolarity, Na+-K+-ATPase activity and Hsp70 of juvenile Fenneropenaeus chinensis cultured in seawater with a salinity of 20 were studied. The results show that weight gain in the salinity fluctuation treatments was better than that in control; in particular, the weight gain of treatments S4 and S0, at 231.8% and 196.3%, respectively, was significantly different (P<0.05). The hemolymph osmolarity of treatments S0, S2, S4, S6 and S8 was 635.4, 630.8, 623.6, 614.4 and 600.3 mOsm/kg, respectively, and decreased with increasing salinity fluctuation amplitude. The level of Na+-K+-ATPase activity in gills of F. chinensis was higher than that in hepatopancreas, but there were no significant differences among all treatments, either in gills or hepatopancreas (P>0.05). The relative level of Hsp70 in treatment S4 was 48.4% and 40.4% higher than control in muscle and eyestalks, respectively, with the highest values being recorded under a salinity fluctuation amplitude of 4.  相似文献   

9.
10.
The capability ofScenedesmus obliquus to remove cations (K^+, Na^+, Ca^2+, Mg^2+) from saline- alkaline water was investigated at different salinities (0, 5, 10, 15, 20, 25) and carbonate alkalinities (0, 5, 10, 15, 20, 25, 30, 35 mmol/L). K^+, Na^+, Ca^2+, and Mg^2+ in saline-alkaline water were efficiently removed by S. obliquus. The maximum removal of the cations (29.37 mg for K^+, 185.85 mg for Na^+, 23.07 mg for Ca^2+, 66.14 mg for Mg^2+) occurred at salinity 25. The maximum removal of K^+ (2.28 mg), Na+ (6.62 mg), Ca^2+ (1.01 mg), and Mg2+ (0.62 mg) occurred at carbonate alkalinities of 25 mmol/L for K*, 35 mmol/L for Na+, 20 mmol/L for Ca2+, and 25 mmol/L for Mf+, respectively. Under a salinity stress, the concentration of Na' in S. obliquus increased significantly, while that of K~ decreased significantly. The concentrations of Ca^2+ and Mg2+ decreased as well. The ratios of K+/Na~, Ca2+/Na^+, and Mg^2+/Na^+ were significantly lower in all salinity treatments than those of the control. Under alkaline stress, the concentrations of Nan and K+ in S. obliquus decreased significantly and the ratios of K^+/Na^+, Ca2+/Na^+, and Mg^2+/Na^+ were significantly higher in all treatments than in the control. Moreover, the concentrations of Ca2+ and Mg2+ in S. obliquus at alkalinities of 5-10 mmol/L were significantly higher than those of the other treatments. The removal of Na+ by S. obliquus mainly occurs through biosorption, and Mg^2+ and Ca^2 + were removed through both biosorption and bioaccumulation.  相似文献   

11.
The effects of environmental Na+/K+ ratio on the gill ion-transport enzyme activity, plasma osmolality and growth of Cynoglossus semilaevis juveniles were investigated. The results showed that, plasma osmolality was similar among flounder adapted to different Na+/K+ ratios of saline groundwaters (P>0.05), while the growth, gill Na+, K+-ATPase and HCO3 -ATPase activities were affected by Na+/K+ ratio significantly (P<0.05). The gill Na+, K+-ATPase activity reached its maximum on day 3, then decreased gradually from day 3 to day 9 and remained constant from day 9 to day 15. The peak values of gill Na+, K+-ATPase activity were detected on day 3 for all Na+/K+ ratios of saline groundwaters, then the enzyme activities descended, and on day 9 the enzyme activities achieved steady state, and the gill HCO3 -ATPase activity increased rapidly and achieved steady state after one day. During steady state, the gill Na+, K+-ATPase and HCO3 -ATPase activity of Na+/K+ ratios 20 and 40 treatments were significantly higher than those in the control group (Na+/K+ ratio 27.5), while there were no significant differences between the Na+/K+ ratio 30 treatment and the control group; the gill Na+, K+-ATPase activity of Na+/K+ ratio 20 and 40 treatments were significantly higher than that for ratio 30 treatment, but there were no significant differences of gill HCO3 -ATPase activity among these treatments. At the end of the 15-day experiment, the weight gain (%) and specific growth rate (SGR) of flounders maintained in seawater were significantly higher than those in groundwaters; significant differences also occurred among the treatments; Na+/K+ ratio 30 treatment had the highest values (33.7% and 1.94 respectively), which were significantly higher than those under Na+/K+ ratios 20 and 40 treatments. Therefore, for the saline groundwater used in this experiment, it is suggested that the Na+/K+ ratio be adjusted to approximately 30, i.e., as close to that of natural seawater as possible in the culture of flounder.  相似文献   

12.
We evaluated the ability of juvenile Amur sturgeon (Acipenser schrenckii) to osmoregulate and grow in saltwater. Hatchery-reared juveniles (mean weight 106.8 g, 5-month old) were transferred from freshwater to 10, 20, and 25 salinity saltwater over a period of 20 d. We measured the growth, serum osmolality, ion concentrations, and Na+/K+-ATPase activity. In addition, we prepared samples of gill tissue to quantify morphological changes in gill ultrastructure. Rearing in up to 25 saltwater for 30 d had no significant effect on growth. Similarly, serum osmolality and ion concentrations were similar to levels reported in other teleosts following acclimation to saltwater. Serum osmolality and Na+, Cl concentrations increased significantly with the initial increase in salinity. Afterwards, levels tended to stabilize and then decrease. Serum K+ levels did not change during acclimation to saltwater. Gill Na+/K+-ATPase activity increased initially as salinity was increased. However, the activity later decreased and, finally stabilized at 3.7±0.1 μmol Pi/mg·prot·h in 25 saltwater (1.6 times higher than the level in those in freshwater). In fish that were held only in freshwater, the chloride cells were located in the interlamellar regions of the filament and at the base of the lamella. Following acclimation to 25 saltwater for 30 d, the number and size of chloride cells increased significantly. Our results suggest that juvenile Amur sturgeon is able to tolerate, and grow in, relatively high concentrations of saltwater.  相似文献   

13.
The dinoflagellate Prorocentrum minimum, one of the most widespread red tide causing species, affects marine aquaculture and ecosystems worldwide. In this study, ridgetail white prawn Exopalaemon carinicauda were exposed to P. minimum cells (5 × 104 cells mL?1) to investigate its harmful effects on the shrimp. Antioxidant activities and histological changes were used as indicators of health status of the shrimp. In 72 hours, the mortality of E. carinicauda was not affected, but its antioxidant response and histology were statistically different from those of control. Elevated superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities and depressed catalase (CAT) activity were observed in gill; while increased SOD, glutathione S-transferase (GST), CAT activities and modulated GPX activity were observed in hepatopancreas. Thus, antioxidant activities in gill and hepatopancreas seem to respond differentially to harmful alga exposure. Increased malondialdehyde (MDA) content in early a few hours indicates the damage of the antioxidant defense system. Although MDA content recovered to a low level thereafter, a series of histological abnormalities including accumulation or infiltration of hemocytes, tissue lesions and necrosis were discovered in gill and hepatopancreas. Exposure to P. minimum induced sublethal effects on E. carinicauda, including temporary oxidative damage and histological injury.  相似文献   

14.
15.
We studied the effects of mercury (Hg2+) on antioxidant and digestive enzyme activities in terms of LC50 value and on hepatopancreas histostructures of juvenile Chinese mitten crabs Eriocheir sinensis in 40-day exposure to various concentrations of Hg2+ (0, 0.01, 0.05, 0.10, 0.20, and 0.30 mg/L). The results show that the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) significantly increased in the concentrations of 0.01 and 0.05 mg/L, while that of enzyme decreased in 0.10, 0.20 and 0.30 mg/L treatments. Meanwhile, Hg2+ disrupted the histostructures of the hepatopancreas, causing decreases in activities of pepsin, tryptase, amylase, and cellulose, which are synthesized in the hepatopancreas. Moreover, as the Hg2+ concentration increased, the survival rate of the crabs decreased, worst at 56.57% in 0.30 mg/L. Therefore, although crabs are able to tolerate low levels of mercury pollution, high levels lead to cellular injury and tissue damage in hepatopancreas, which then loses some of its vital physiological functions such as absorption, storage, and secretion.  相似文献   

16.
We investigated the effect of tributyltin (TBT) exposure on the concentration of malondialdehyde (MDA) and the activity levels of the superoxide dismutase (SOD), catalase (CAT), and acid and alkaline phosphatase (ACP and AKP) enzymes in the small abalone, Haliotis diversicolor supertexta. We collected samples of the hepatopancreas and hemolymph 2, 6, 24, 48, 96, and 192 h after exposure to 0.35 μg (Sn)/L TBT. In the hepatopancreas, ACP activity was significantly higher in animals exposed to TBT 2, 24, and 96 h post-exposure compared with the control animals. AKP activity was also higher after 2 h, but SOD and CAT activity was unchanged. The concentration of MDA in the hemolymph was significantly higher than the control animals 2 and 6 h post-exposure. In the hemolymph of animals exposed to TBT, ACP activity was significantly lower than in the control animals 192 h post-exposure, whereas AKP activity was significantly lower 2 and 192 h post-exposure. Hemolymph SOD activity and levels of MDA were significantly lower than in the control animals 24 h after exposure but significantly higher after 96 h. Our results demonstrate that exposure to TBT cause rapid changes in ACP and AKP activity as well as altering the concentration of MDA in the hepatopancreas and hemolymph. SOD and CAT do not appear to be involved in the detoxification of TBT in the hepatopancreas of small abalone.  相似文献   

17.
18.
In this study, molecular weight controllable degradation of algal Laminaria japonica polysaccharides(LPS) was investigated by ultrasound combined with hydrogen peroxide. Three main factors, i.e., ultrasonic power(A), ultrasonic time(B), and H2O2 concentration(C) were chosen for optimizing parameters by employing three-factors, three-levels BBD. The influence of degradation on structure change and antioxidant activities was also investigated. A second-order polynomial equation including molecular weight(Y) of Laminaria japonica polysaccharides and each variable parameter, i.e., ultrasonic power(A), ultrasonic time(B), and H2O2 concentration(C), was established: Y=20718.67-4273.13A-4000.38B-1438.75C+2333.25AB+1511.00AC+873.00BC+2838.29A2 + 2490.79B2+873.04C2. The equation regression coefficient value(R2 = 0.969) indicated that this equation was valid. The value of the adjusted determination coefficient(adjusted R2 = 0.914) also confirmed that the model was highly significant. The results of selected experimental degradation conditions matched with the predicted value. FT-IR spectra revealed that the structures of LPS before and after degradation were not significantly changed. Antioxidant activities of LPS revealed that low Mws possessed stronger inhibitory than the original polysaccharides. The scavenging effects on superoxide radicals was the highest when IC50 of crude LPS was 4.92 mg mL-1 and IC50 of Mw 18.576 KDa was 1.02 mg mL-1, which was fourfold higher than initial polysaccharide.  相似文献   

19.
Small heat shock proteins encompass a widespread but diverse class of proteins,which play key roles in protecting organisms from various stressors.In the present study,the full-length cDNAs of two small heat shock proteins(MgsHSP22 and MgsHSP24.1)were cloned from Mytilus galloprovincialis,which encoded peptides of 181 and 247 amino acids,respectively.Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR,with the highest expression being observed in muscle and gonad tissues.The real-time PCR results revealed that Cd signifi cantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 μg/L Cd 2 + exposure.MgsHSP24.1 expression was also signifi cantly inhibited after 50 μg/L Cd 2+ exposure for 48 h.With regard to antioxidant enzymes,increased GPx and CAT activity were detected under Cd 2+ stress(5 and 50 μg/L),while no signifi cant difference in SOD activity was observed throughout the experiment.Overall,both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M.galloprovincialis.  相似文献   

20.
Reactive oxygen species (ROS) scavengers, including ascorbate peroxidase, superoxide dismutase, catalase and peroxidase, are the most commonly used biomarkers in assessing an organisms’ response to many biotic and abiotic stresses. In this study, we cloned an 866 bp GST (phi) gene in Lemna minor and investigated its characteristics, expression and enzymatic activities under 75 μmol/L cadmium concentrations in comparison with other ROS scavengers. GST (phi) gene expression patterns were similar to those of other scavengers of ROS. This suggests that GST (phi) might be involved in responding to heavy metal (cadmium) stress and that its expression level could be used as a bio-indicator in monitoring cadmium pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号