首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于2015~2017年台湾地区“苏迪罗”、“鲇鱼”、“海棠”等3次台风事件,利用地基GPS数据反演得到大气可降雨量(PWV),初步分析台风期间PWV与降雨量的关系,并利用交叉小波和小波相干进一步分析PWV与降雨量的时空变化规律。结果表明,台风发生期间,PWV总体呈先上升后下降的趋势,波动性剧烈;降雨发生时,PWV一定发生剧烈变化;在研究时域内,PWV与降雨量存在很强的正相关关系,相关系数达到0.7,PWV超前降雨量变化,PWV变化后的0~3 h发生强降雨。研究PWV与降雨量的时空变化特征可为短时降雨预报提供参考。  相似文献   

2.
利用中国内地构造环境监测网络GNSS观测数据,结合台风事件资料,开展台风事件对中国内地地区水汽变化周期影响研究。分析发现,在台风影响下,GNSS天顶对流层延迟(zenith tropospheric delay,ZTD)水汽变化周期与正常天气相比会缩短,同时降水增加。通过与降雨进行对比发现,台风过程中降雨发生之前ZTD会发生较为剧烈的变化,并保持在一个峰值。通过选取台风中心不同距离的GNSS站点进行对比分析发现,台风最先经过的区域站点ZTD产生波动要比之后经过的站点早,且台风先经过区域的降水量比后经过区域的降水量大。本文研究可为台风轨迹预报和气象部门的台风灾害及极端降水等预警提供参考。  相似文献   

3.
针对2017-05-22~05-23湖南地区的一次暴雨过程,结合气温、气压等大气热动力条件,分析此次降雨过程的大气可降水量(precipitable water vapor,PWV)时空分布及其动态变化特征。研究表明,在水汽条件充足的情况下,降雨的形成需要强烈的水汽辐合上升作用,可以结合热动力条件来预判降水时间和强度;PWV与实际降雨量平面分布图的对比分析表明,PWV高值区和实际降雨落区基本重合,PWV时空变化分析对预测暴雨落区有一定的指示意义。  相似文献   

4.
用1961—2008年NOAA的月平均再分析资料和1980—2006年云南5个探空站的资料,采用大气可降水量和水汽通量公式计算分析大气可降水量和水汽通量,并用线性趋势分析其变化特征。结果表明:云南四季的可降水量北少南多,呈“u”型分布,夏季最大,冬季最小。对云南地区四季的水汽通量分析表明,四季的水汽净收入主要集中在对流层低层;地面-300hPa的水汽净收入在夏季最大、秋季次之,而冬季最小。云南经向的水汽输送和纬向的水汽输送呈反相关,近48年,云南四季水汽呈增加趋势,其中夏季增加最多,春季次之。  相似文献   

5.
 水汽尽管在大气中的含量很少, 但是其在大气中的变化却十分剧烈。其空间分布极不均匀,时间变化也极其迅速。它不仅是天气、气候变化的主要驱动力,也是灾害性天气形成和演变中的重要因子。鉴于水汽信息在数值模式、气候监测、人工影响天气、空中水资源开发等一系列业务领域中的重要性,建立局地或者区域的GPS监测系统已成为目前迫切需要解决的问题。GPS水汽监测系统由数据服务器、解算服务器及应用服务器3部分组成。首先,其通过数据服务器接收来自GPS卫星所发射的信号,生成相应解算软件所能识别的RENEX格式文件,以及获取自动气象站所测得的温、压、湿等相关气象数据,并将得到的数据保存并传送出去;然后,编写相关解算程序使得解算服务器能定时解算大气延迟量,进而反演出可降水量PWV;最后,利用应用服务器完成与气象应用相关产品的生成和服务任务,从而实现该系统的一体化功能。该系统能定制半小时 一次的解算任务,能较准确反映该时段该区域水汽快速变化的特性。建设该系统的最终目的是希望它能填补GPS反演水汽技术在四川乃至西南地区应用的空白,增强气象部门对中小尺度灾害性天气的预报监测能力,并促进许多与之相关的气象业务化工作的开展。  相似文献   

6.
应用GPS探测的可降水资料PWV对香港地区2013年遭遇的两次台风中水汽变化特征进行对比分析表明,GPS/PWV资料在一定程度上能反映出不同距离台风影响强度,尤其是气压变化。远距离台风,PWV呈现明显的震荡性变化,波动性更强,且震荡程度与降雨强度有很好的对应关系|近距离台风,PWV呈明显的单峰结构变化,增湿过程与台风影响时间及距离存在某种关系,PWV短时间内急升变化幅度能较好地反映降水强度。  相似文献   

7.
统计确定临界降雨量是滑坡早期预警常用的方法。东南沿海地区台风暴雨不同于一般降雨, 常引发滑坡灾害, 从而威胁沿海地区人民生命财产安全。为了建立台风和非台风降雨型滑坡临界降雨量预测模型, 以浙江丽水市为例, 基于2010-2020年台风暴雨、非台风降雨诱发滑坡与降雨量的统计, 构建了丽水市滑坡发生概率和有效降雨量的关系, 提出了多时长临界降雨量预测模型, 并开展了台风和非台风降雨型滑坡预测模型结果的对比分析。结果表明, 非台风降雨与台风暴雨之间雨型和雨量差异是导致丽水市内2类降雨滑坡预测模型差异的主要原因; 以多时长预测模型确定的临界雨量值法和有效降雨天数更加符合丽水市降雨型滑坡的预测预报, 且预测精度相比于传统相关性分析法更高。研究成果对于开发区域降雨型滑坡预测模型具有理论意义, 对我国东南沿海地区汛期滑坡早期预警具有重要实际意义。   相似文献   

8.
本文采用超快速预报星历处理福建省连续运行卫星定位服务系统(FJCORS)资料得到大气可降水量(PWV),分别与同期采用最终精密星历和探空资料获得的PWV进行对比,结果表明:采用不同星历反演的PWV偏差在0.25 mm以内,并与探空结果具有较好的一致性,相关系数达到0.92,因此采用预报星历可以近实时反演PWV。对2015年"苏迪罗"台风登陆福建前后的PWV动态分析研究,表明PWV资料可以很好地监测水汽时空分布和变化,有助于分析强降雨天气的水汽传输过程,对预报强降水具有重要的指示作用。  相似文献   

9.
文章介绍利用GAMIT软件对南宁地区CORS基准站的观测数据进行处理分析,引入反距离加权插值法简化分析数据,以南宁地区探空站的气象观测数据作为检验标准,验证CORS数据处理的解算精度和可靠性,并结合探空气象数据和实际降雨情况,重点分析台风过境前后大气可降水量的时间序列变化。结果表明,CORS数据反演得到的PWV和探空气象数据获得的PWV具有很好的一致性,整体的变化趋势和台风过境前后的实际降雨情况基本吻合,能够较好地应用于极端天气预警。  相似文献   

10.
通过分析2018年2次典型降雨过程中大气可降水量(precipitable water vapor,PWV)的分布特征及其与实际降水量的关系,探讨PWV在预测降雨中的应用。结果表明,在降雨过程中,PWV的分布与实际降水量具有很好的相关性。PWV对降雨的发生具有一定的指示作用,在降雨发生前6~12 h,PWV开始增加;在降雨发生前1~2 h内PWV迅速上升;当PWV显著增加并保持高值时,预示强降雨的发生。PWV变化越快,降雨概率和降水量就越大。滑动平均处理结果进一步证明,强降雨发生前后,PWV会出现快速聚集和释放的现象,PWV可作为短期临近预报及天气分析等研究和应用的序列资料,为传统气象手段提供有力补充。  相似文献   

11.
???GPS???????????PWV????????2013?????????????????????仯???????ж?????????,GPS/PWV???????????????????????????????????????????????仯?????????磬PWV?????????????仯???????????????????????????к????????|????????磬PWV????????????仯???????????????????估??????????????PWV???????????仯??????????????????  相似文献   

12.
为简化GNSS大气可降水量(PWV)的计算过程,提高GNSS-PWV实时解算效率,利用2017~2018年长三角地区7个GNSS测站数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(T)、地面气压(P)之间的线性关系,通过线性拟合建立PWV直接转换区域模型。实验结果表明:1)PWV与ZTD、P和T之间具有良好的相关性,相关系数分别为0.99、-0.74和0.73;2)基于ZTD的全年单因子PWV模型的RMS为3.07 mm,基于ZTD和T的全年双因子PWV模型RMS为2.35 mm,基于ZTD和P的全年双因子PWV模型RMS为1.18 mm,基于ZTD、T和P的全年多因子PWV模型RMS为0.47 mm,基于ZTD、T和P的分季节多因子PWV模型的平均RMS为0.28 mm,后者预测精度略优。  相似文献   

13.
?????????GPS???????????????????????????2011-07-24-26???????????????GPS???????仯???????о??????????GPS????????仯???????????3????????????????????????????????????????С?????????????????????????????н?????????????????????п?????????????????????????????????????????????κ???????????????????????????У????????С?????????????5???GPS???????仯???????????GPS????????仯????????????????????????????  相似文献   

14.
针对GPT2w模型误差累积所导致的天顶对流层延迟(zenith tropospheric delay, ZTD)和大气可降水量(precipitable water vapor, PWV)精度不高的问题,利用2017年长三角地区7个探空站和2个GNSS站的实测数据检验GPT2w模型获取的气压、温度、水汽压、加权平均温度(Tm)和ZTD等参数的精度,并融合GNSS解算得到的ZTD(GNSS-ZTD)与GPT2w模型获取的气象参数,提高PWV反演精度。结果表明:1)近地面处的气压、温度和水汽压的bias分布在-3~4 mbar、-7~7 K和-9~2 mbar之间,精度较高;2)GPT2w模型获取的Tm在长三角地区适用性较好,年均bias和RMS分别为-1.21 K和6.89 K;3)基于GPT2w模型解算的ZTD的bias和RMS均值分别为1.4 cm和9.4 cm,精度明显低于基于实测气象数据获得的GNSS-ZTD;4)参数融合法计算的PWV与GNSS-PWV精度相当,该方法可用于无实测气象参数时实时获取PWV。  相似文献   

15.
针对东南沿海地区GNSS大气可降水量(PWV)计算过程参数多、数据量大、效率不高且易产生累积误差等问题,本文基于中国东南沿海地区2017~2018年18个CORS站的GNSS数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(Ts)和地面大气压(Ps)之间的线性关系,并利用多元线性拟合方法建立多因子GNSS-PWV直接转换模型,为研究区提供简捷高效的PWV计算方法。结果表明,GNSS-PWV与ZTD、Ps和Ts之间具有良好的相关性,相关系数分别为0.98、-0.65和0.78;基于ZTD、Ps和Ts的多因子PWV模型RMS为0.33 mm,精度最高,明显优于基于ZTD的单因子PWV模型(4.66 mm),而基于ZTD和Ps的双因子PWV模型RMS为0.50 mm。  相似文献   

16.
为探究ENSO事件对GNSS ZTD(水汽)周期变化的影响及其相互关系,以河北省为例开展ENSO事件对GNSS ZTD及其周期变化的影响研究。首先利用快速傅里叶变换方法筛选出南方涛动指数(SOI)与GNSS水汽的共同周期,再利用小波变换提取GNSS水汽与SOI共同周期所在的高频项,并将重构的高频项与SOI进行相关性分析。结果表明,SOI与GNSS ZTD存在负相关性,由此推断ENSO事件与GNSS ZTD的周期变化存在一定关联。利用快速傅里叶变换方法分别提取ENSO事件和正常气候下GNSS ZTD的变化周期,分析ENSO事件对GNSS ZTD周期变化的影响,结果表明,ENSO暖事件(厄尔尼诺事件)对GNSS ZTD的最长显著周期存在显著影响;ENSO冷事件(拉尼娜事件)对GNSS ZTD的最长显著周期影响较弱。  相似文献   

17.
利用小波变换对暴雨过程中GNSS气象要素的初步探索   总被引:1,自引:0,他引:1  
利用小波分解对地基GNSS获取的可降水量(PWV)、气压和对流层延迟(ZTD)等时序进行处理和分析,以暴雨的实际降水量作为判别依据。研究结果表明,1 h间隔PWV与ZTD的小波高频分解系数接近,均能够从中提取暴雨预报特征信息,可用高频ZTD代替PWV进行小波分析;频率在30 min-1h之间的ZTD,预报时间信息应在第1~3层级进行搜寻,30 min以下频率的应在第3~5层级进行搜寻;db4小波分解PWV的暴雨预报阈值可设为-1.2,db4小波分解ZTD的暴雨预报阈值可设置为-0.007,db2小波分解ZTD的暴雨预报阈值可设为-0.01。  相似文献   

18.
提出一种基于主成分分析(PCA)的ZTD时空建模方法,并利用GNSS连续运行参考站获取的ZTD数据,建立香港、云南、中国3个区域范围的ZTD时空模型。结果表明,所建立的区域对流层延迟时空模型不仅精度明显高于Saastamoinen、EGNOS和UNB3m模型,而且建模过程简单,模型参数较少,使用方便。  相似文献   

19.
使用亚洲区域18个IGS测站和中国区域内16个探空站2016~2018年的数据,研究GPT3模型反演天顶对流层延迟(ZTD)和大气可降水量(PWV)的精度,并与其他GPT系列模型进行对比。结果表明,GPT3-1模型估计的ZTD的bias均值和最大值均最小,分别为1.34 mm和14.06 mm;GPT3模型整体精度略优于GPT2w模型,优于GPT2模型。探空站处GPT3模型反演的PWV的bias和RMSE均表现出较强的季节性特征;由GPT3模型反演的PWV的月均值可知,GPT3-1模型比GPT3-5模型具有更高的精度和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号