首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Introduction EnoughhasbeensaidabouttheteleconnectionofENSO(ElNi o SouthernOscilla tion)inthetropicalPacificOceanandtheclimateinthesouthernhighlatitudes(Fletcher etal.1982;SmithandStearns1993;SimmodsandJacka1995;Liuetal.2002;Kwok andComiso2002).Inres…  相似文献   

2.
Using the monthly wind and sea surface temperature (SST) data, southern meridional atmospheric circulation cells associated with the Indian Ocean Dipole Mode (IOD) events in the Indian Ocean are for the first time described and examineS. The divergent wind and pressure vertical velocity are employed for the identification of atmospheric circulation cells. During the four different phases of the positive IOD events, the anomalous meridional Hadley circulation over the western Indian Ocean shows that the air rises in the tropics, flows poleward in the upper troposphere, sinks in the subtropics, and returns back to the tropics in the lower troposphere. The anomalous Hadley circulation over the eastern Indian Ocean is opposite to that over the western Indian Ocean. During positive IOD events, the meridional Hadley circulation over the eastern Indian Ocean is weakened while it is strengthened over the western Indian Ocean. Correlation analysis between the IOD index and the indices of the Hadley cells also proves that, the atmospheric circulation patterns are evident in every IOD event over the period of record.  相似文献   

3.
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850–2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.  相似文献   

4.
热带海洋热状况是影响中国气候变化的主要因子之一,为了研究热带次表层海温如何影响中国气候,通过相关计算和合成分析等方法讨论了热带太平洋至印度洋次表层海温异常对中国东部夏季降水和温度的影响。结果表明:当冬季赤道东印度洋至西太平洋次表层海温偏暖(偏冷),中印度洋和东太平洋次表层海温偏冷(偏暖),夏季,长江中下游地区降水偏少(偏多),华南、华北和东北大部地区降水偏多(偏少);中国东部大范围高温(低温)。其可能的影响途径为,东亚夏季风环流对热带次表层海温异常的响应导致了其年际变化,进而引起中国东部夏季气候的异常分布。  相似文献   

5.
Antarctic sea ice has experienced an increasing trend in recent decades, especially in the Ross Sea and Indian Ocean sectors. Sea ice variability affects greatly the maritime airmass transport from high latitude to Antarctic continent. Here we present a new ice core record of sea salt sodium(ssNa+) concentration at annual-resolution in the Princess Elizabeth Land spanning from 1990 to 2016, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent(SIE) in the Southern Indian Ocean(SIO) given their significant correlation(R =-0.6, P 0.01) over the past 27 years. The correlation and composite analyses results show that the ssNa~+ at the 202 km inland from Zhongshan Station and the SIE changes in SIO are closely related to the Indian Ocean Dipole(IOD) and Southern Annular Mode(SAM). The northward wind in central SIO occurs during positive IOD and the strengthened westerlies occurs during positive SAM, both of which favor increased sea ice in SIO and lead to the decreased ssNa~+ concentration at the coastal site.  相似文献   

6.
An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the “oceanic channel dynamics” and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.  相似文献   

7.
Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadISST and SODA datasets.Wind and heat flux datasets were used to discuss the mechanisms for these variations.Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole(IOD)events are significantly different.A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process,which does not take place at the subsurface layer.In the western pole,the surface anomalies last longer than the subsurface anomalies.The subsurface anomalies are strongly correlated with ENSO,while the relationship between the surface anomalies and ENSO is much weaker.And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer.The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields,while the heat flux effect is important on SST.  相似文献   

8.
用Nino 3指数、印度洋单极指数、偶极子指数描述热带太平洋、印度洋海表温度 (SST)的年际异常 ,季节分析表明 :冬季Nino3区与热带印度洋海表温度距平 (SSTA)相互关系表现为单极 ,且 1976年以后两者的相互关系减弱 ,其可能原因 :一是冬季是ENSO(厄尔尼诺 )事件的盛期 ;二是冬季西太平洋暖水区东移 ,造成两洋的垂直纬向环流耦合减弱。夏季两者相互关系表现为偶极 ,1976年以后两者的相互关系加强 ,其可能原因 ,一是夏季是偶极子盛期 ,ENSO事件的发展期 ;二是夏季西太平洋暖水区虽然东移 ,但暖水区位置偏北 ,且东南印度洋的上升支强度增大 ,造成两洋的纬向环流耦合更强烈  相似文献   

9.
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (IOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an El Niño (La Niña) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).  相似文献   

10.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   

11.
The Indian Ocean Dipole(IOD) is an important natural mode of the tropical Indian Ocean(TIO). Sea surface temperature anomaly(SSTA) variations in the TIO are an essential focus of the study of the IOD. Monthly variations of air-sea heat flux, rate of change of heat content and oceanic thermal advection in positive/negative IOD events(pIODs/nIODs) occurring after El Ni?o/La Ni?a were investigated, using long-series authoritative data, including sea surface wind, sea surface flux, ocean current, etc. It was found that the zonal wind anomaly induced by the initial SSTA gradient is the main trigger of IODs occurring after ENSOs. In pIODs, SSTA evolution in the TIO is primarily determined by the local surface heat flux anomaly, while in nIODs, it is controlled by anomalous oceanic thermal advection. The anomalous southwestern anticyclonic circulation in pIODs enhances regional differences in evaporative capacity and latent heat, and in nIODs, it augments the east-west difference in the advective thermal budget. Further, the meridional anomaly mechanism is also non-negligible during the development of nIODs. As the SWA moves eastward, the meridional SWA prevails near 60°E and the corresponding meridional anomalous current appears. The corresponding maximum meridional thermal advection anomaly reaches 200 Wm~(-2) in September.  相似文献   

12.
Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E–75°E, 0°–10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.  相似文献   

13.
前期印度洋海温异常对中国春季降水的影响   总被引:2,自引:0,他引:2  
为了进一步认识印度洋海温的异常变化与中国降水的关系,采用SVD分析、相关分析及合成差值分析讨论了前期冬季关键区海温的异常变化对中国春季降水影响的差异,探讨了产生这种影响的原因。结果表明:前期冬季关键区海温的异常增高(降低),会造成后期春季中国华北往南到华中、华东、华南东部及西北的新疆地区的降水明显增多(减少),西南的四川、贵州及华南的广西等地降水会有所减少(增多)。与关键区冷年相比,在关键区的暖年,环流形势反映出东欧槽显著减弱,北方气压显著降低,蒙古高压明显减弱,冷空气南下更为明显,而华南东部、华中、华东及华北一直被较为显著的南风气流控制,海洋的暖湿气流向中国内陆输送更为显著,使得东部及中部大部分地区水汽较为充沛,形成大面积的降水。  相似文献   

14.
Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.  相似文献   

15.
This paper attempts to analyze in detail the remote influence of the Indian Ocean Basin warming on the Northwest Pacific (NWP) during the year of decaying El Niño. Observation data and the Fast Ocean-Atmosphere coupled Model 1.5 were used to investigate the triggering conditions under which the remote influence is formed between the positive sea surface temperature (SST) anomaly in the North Indian Ocean and the Anomalous Northwest Pacific anticyclone (ANWPA). Our research show that it is only when there is a contributory background wind field over the Indian Ocean, i.e., when the Indian Summer Monsoon (ISM) reaches its peak, that the warmer SST anomaly in the North Indian Ocean incites significant easterly wind anomalies in the lower atmosphere of the Indo-West tropical Pacific. This then produces the remote influence on the ANWPA. Therefore, the SST anomaly in the North Indian Ocean might interfere with the prediction of the East Asia Summer Monsoon in the year of decaying El Niño. Both the sustaining effect of local negative SST anomalies in the NWP, and the remote effect of positive SST anomalies in the North Indian Ocean on the ANWPA, should be considered in further research.  相似文献   

16.
Deng  Kangping  Cheng  Xuhua  Feng  Tao  Ma  Tian  Duan  Wei  Chen  Jiajia 《中国海洋湖沼学报》2021,39(1):26-44
Feature s of the interannual variability of the spring Wyrtki Jet in the tropical Indian Ocean are revealed using observation data and model output.The results show that the jet has significant interannual variation,which has a significant correlation with winter El Nino Modoki index(R=0.62).During spring after an El Nino(La Nina) Modoki event,the Wyrtki Jet has a positive(negative) anomaly,forced by a westerly(easterly) wind anomaly.The result of a linear-continuously stratified model shows that the first two baroclinic modes explain most of the interannual variability of the spring Wyrtki Jet(-70%) and the third to fifth modes together account for approximately 30%.Surface wind anomalies in the tropical Indian Ocean are related to the Walker circulation anomaly associated with El Nino/La Nina Modoki.The interannual variability of the spring Wyrtki Jet has an evident impact on sea surface salinity transport before the onset phase of the summer monsoon in the Indian Ocean.  相似文献   

17.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

18.
Monthly ocean temperature from ORAS4 datasets and atmospheric data from NCEP/NCAR Reanalysis I/II were used to analyze the relationship between the intensity of the South Asian summer monsoon(SASM) and upper ocean heat content(HC) in the tropical Indo-Pacific Ocean.The monsoon was differentiated into a Southwest Asian Summer Monsoon(SWASM)(2.5°–20°N,35°–70°E) and Southeast Asian Summer Monsoon(SEASM)(2.5°–20°N,70°–110°E).Results show that before the 1976/77 climate shift,the SWASM was strongly related to HC in the southern Indian Ocean and tropical Pacific Ocean.The southern Indian Ocean affected SWASM by altering the pressure gradient between southern Africa and the northern Indian Ocean and by enhancing the Somali cross-equatorial flow.The tropical Pacific impacted the SWASM through the remote forcing of ENSO.After the 1976/77 shift,there was a close relationship between equatorial central Pacific HC and the SEASM.However,before that shift,their relationship was weak.  相似文献   

19.
冬夏季热带太平洋至印度洋次表层海温变化的模态特征   总被引:1,自引:1,他引:0  
采用美国Scripps海洋研究所的1955—1998年全球海洋上层海水温度月距平资料,对热带太平洋至印度洋各层海温进行经验正交函数分解,分析其主要模态特征。结果表明:热带太平洋至印度洋次表层海温场主要表现出东、西太平洋海温异常反位相变化的特征,异常强度冬季明显强于夏季。冬季赤道东太平洋40m层,东印度洋至西太平洋120m层,夏季赤道东太平洋40m层,东印度洋至西太平洋160m层为海温异常的显著区域。冬季0—60m层第一特征向量表现出厄尔尼诺(拉尼娜)模态特征,第二特征向量表现出海温异常的东西运移模态特征,80—400m层第一特征向量表现出西太平洋暖池模态特征,第二特征向量表现出海温异常的东西运移模态特征。夏季0—60m层特征向量表现出厄尔尼诺(拉尼娜)模态,80—400m层特征向量表现出西太平洋暖池模态特征。  相似文献   

20.
INTRODUCTIONThemonsoonhasacirculationfeaturethatisplanetaryinscaleandanidentifiablesignalregardingitssubsequentintensitysomeninemonthspriortotheactivestageofthesummermonsoon(WebsterandYang,1992).Furthermore,themagnitudeofthemonsoonvariabilityissubstantia…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号