首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
INTRODUCTIONPolarlowsareintensemeso scalecyclonesthatformincoldairstreamsofthepolarairmass.Theyhavehorizontalscalesoftheorderofseveralhundredkilometers;severalhourstoseveraldayslifecycles;andusuallydevelopoverhighlatitudeoceansinwinter,forexample ,theGulfofAlaska(1 3 5-1 60°W ,50 -60°N) ,theBarentsSea (2 0 -50°E ,65-75°N) ,theLabradorSea (50 -60°W ,55-65°N)andtheNorwegianSea (5°W -1 0°E ,60 -70°N) .Onsatelliteimages ,polarlowsareoftencharacterizedbytight,spiralcloudpatterns…  相似文献   

2.
In this study, the temporal and spatial variations of observed global oceanic precipitation during 1979–2010 are investigated. It is found that the global trend in precipitation during this period varies at a rate of 1.5%/K of surface warming while the rate is 6.6%/K during 2006–2010. The precipitation is highly correlated with Sea Surface Temperature(SST) in both the temporal and the spatial patterns since the strong 1997–98 El Nino event. Considering the distributions of precipitation and SST, seven oceanic regions are classified and presented using the observed Global Precipitation Climatology Project(GPCP) data and Extended Reconstructed Sea Surface Temperatures, version 3(ERSST.v3) data. Further examining the mechanisms of the classified oceanic precipitation regions is conducted using the Tropical Rainfall Measuring Mission(TRMM) satellite, GFDL-ESM-2G model precipitation and SST data and Hadley Center sea ice and SST version 1(Had ISST1) data. More than 85% of global oceanic precipitations are controlled by either one or both of the warmer-get-wetter mechanism and wet-get-wetter mechanism. It is estimated that a 0.5 SST signal-to-noise ratio, representing the trend of SST time series to the standard deviation, is a criterion to distinguish the mechanism of a region. When the SST ratio is larger than 0.5, the precipitation of this region is controlled by the warmer-get-wetter mechanism. SST, rather than the humidity, is the pivotal factor. On the other hand, when the SST ratio is less than 0.5, the precipitation is controlled by the wet-get-wetter mechanism. The SST variability is a significant factor contributing to the precipitation variation.  相似文献   

3.
Various satellite data, JRA-25 (Japan reanalysis of 25 years) reanalyzed data and WRF (Weather Research Forecast) model are used to investigate the in situ effect of the ESKF (East China Sea Kuroshio Front) on the MABL (marine atmospheric boundary layer). The intensity of the ESKF is most robust from January to April in its annual cycle. The local strong surface northerly/northeasterly winds are observed right over the ESKF in January and in April and the wind speeds decrease upward in the MABL. The thermal wind effect that is derived from the baroclinic MABL forced by the strong SST gradient contributes to the strong surface winds to a large degree. The convergence zone existing along the warm flank of the ESKF is stronger in April than in January corresponding to the steeper SST (sea surface temperature) gradient. The collocations of the cloud cover maximum and precipitation maximum are basically consistent with the convergence zone of the wind field. The clouds develop higher (lower) in the warm (cold) flank of the ESKF due to the less (more) stable stratification in the MABL. The lowest clouds are observed in April on the cold flank of the ESKF and over the Yellow Sea due to the existence of the pronounced temperature inversion. The numerical experiments with smoothed SST are consistent with the results from the ovservations.  相似文献   

4.
The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of ~600 km and a southwestward phase speed of ~0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.  相似文献   

5.

Satellite measurements of global sea surface temperatures (SST) have been made since 1982 using the multi-channel radiometers (AVHRR) on NOAA polar orbiting satellites. A four year data set was accumulated at daily intervals and a spatial resolution of about 100 kilometers on an interactive computer system. The time lapse evaluation of the data revealed variations of the SST which were related to coastal and equatorial upwelling events as well as to the pronounced equatorial warming associated with the 1982–1983 El Niño. In the present study, satellite time series are used to describe the annual variability of the SST at selected locations along the coast of China, the Yellow Sea, the Sea of Japan and the Equatorial Indian and Pacific Oceans. Further study of the SST off China using higher resolution satellite data are also described.

  相似文献   

6.
台风对中国东南海域叶绿素a浓度影响的遥感研究   总被引:1,自引:0,他引:1  
通过对台风过境前后近一个月的MODIS卫星3A级叶绿素a浓度及海表温度数据的比较与分析,发现海表温度,海表叶绿素a浓度均受到较大的影响,其中海表温度平均下降2~3℃,最高下降近10℃;同时叶绿素a浓度在湛江、阳江海域升高约1.43倍,在东海海域平均升高2.44倍,最高可达9.75倍,并且叶绿素a浓度增长有一个约3~5 d的延迟效应。由此可见,利用卫星遥感资料监测台风对海洋叶绿素a浓度、海表表温度等环境参数的变化有应用前景。  相似文献   

7.
Analysis of COADS data (1958–1987) showed that there is obviously interannual SST oscillation including QBO (Quasi-biennial oscillation) and quasi-3.5 year oscilation, etc., of the SCS (South China Sea), which is the response of the upper mixed layer of the sea to the impact of the East Asian Monsoon anomaly. Most SST anomalies appear in the central basin of the SCS. The phase-locked phenomena linking the SST annual cycle and interannual oscillation is an important characteristic of the SCS climate. There is not only SST response to atmospheric impact, but also feedback to the air. The authors put forward a scheme of regional air-sea interaction in winter time in the SCS. Project 49676276 supported by NSFC and also supported by FSEC.  相似文献   

8.
Version 4(v4) of the Extended Reconstructed Sea Surface Temperature(ERSST) dataset is compared with its precedent, the widely used version 3b(v3b). The essential upgrades applied to v4 lead to remarkable differences in the characteristics of the sea surface temperature(SST) anomaly(SSTa) in both the temporal and spatial domains. First, the largest discrepancy of the global mean SSTa values around the 1940 s is due to ship-observation corrections made to reconcile observations from buckets and engine intake thermometers. Second, differences in global and regional mean SSTa values between v4 and v3b exhibit a downward trend(around-0.032℃ per decade) before the 1940s, an upward trend(around 0.014℃ per decade) during the period of 1950–2015, interdecadal oscillation with one peak around the 1980s, and two troughs during the 1960s and 2000s, respectively. This does not derive from treatments of the polar or the other data-void regions, since the difference of the SSTa does not share the common features. Third, the spatial pattern of the ENSO-related variability of v4 exhibits a wider but weaker cold tongue in the tropical region of the Pacific Ocean compared with that of v3b, which could be attributed to differences in gap-filling assumptions since the latter features satellite observations whereas the former features in situ ones. This intercomparison confirms that the structural uncertainty arising from underlying assumptions on the treatment of diverse SST observations even in the same SST product family is the main source of significant SST differences in the temporal domain. Why this uncertainty introduces artificial decadal oscillations remains unknown.  相似文献   

9.
针对中国南部地区地势西高东低、沿海与内陆存在差异等情况,分析中国南部地区Tm与地面温度、测站高度、季节变化以及纬度的关系,利用中国南部地区19个探空站2015~2017年的探空数据,在Bevis公式的基础上建立只考虑地面温度的线性模型(Tm-SC1模型)和与地面温度、高程、季节变化以及纬度有关的新Tm模型(Tm-SC2模型)。以2018年的探空数据为参考值,对Tm-SC1模型和Tm-SC2模型进行精度验证,并与广泛使用的Bevis公式和GPT3模型进行精度比较。结果表明,Tm-SC1模型的年均偏差和均方根误差(RMS)分别为0.76 K和2.57 K,相比Bevis模型和GPT3模型,其精度(RMS值)分别提高13.8%和2.2%;Tm-SC2模型的年均偏差和均方根误差(RMS)分别为-0.10 K和1.64 K,相比Bevis模型和GPT3模型其精度(RMS值)分别提高44.9%和37.6%。Tm-SC2模型用于GNSS水汽计算导致的理论RMS误差和相对误差分别为0.16 mm和0.43%。因此,Tm-SC2模型更适用于中国南部地区的GNSS水汽探测以及气象研究。  相似文献   

10.
Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind.We used the Cross-Calibrated Multi-Platform(CCMP)24-year wind field data set to investigate the trends of wind energy over the South China Sea during 1988-2011.The results reveal a clear trend of increase in wind power density for each of three base statistics(i.e.,mean,90 th percentile and 99 th percentile)in all seasons and for annual means.The trends of wind power density showed obvious temporal and spatial variations.The magnitude of the trends was greatest in winter,intermediate in spring,and smallest in summer and autumn.A greater trend of increase was found in the northern areas of the South China Sea than in southern parts.The magnitude of the annual and seasonal trends over the South China Sea was larger in extreme high events(i.e.,90~(th) and 99~(th) percentiles)compared to the mean conditions.Sea surface temperature showed a negative correlation with the variability of wind power density over the majority of the South China Sea in all seasons and annual means,except for winter(41.7%).  相似文献   

11.
针对GPT2w模型误差累积所导致的天顶对流层延迟(zenith tropospheric delay, ZTD)和大气可降水量(precipitable water vapor, PWV)精度不高的问题,利用2017年长三角地区7个探空站和2个GNSS站的实测数据检验GPT2w模型获取的气压、温度、水汽压、加权平均温度(Tm)和ZTD等参数的精度,并融合GNSS解算得到的ZTD(GNSS-ZTD)与GPT2w模型获取的气象参数,提高PWV反演精度。结果表明:1)近地面处的气压、温度和水汽压的bias分布在-3~4 mbar、-7~7 K和-9~2 mbar之间,精度较高;2)GPT2w模型获取的Tm在长三角地区适用性较好,年均bias和RMS分别为-1.21 K和6.89 K;3)基于GPT2w模型解算的ZTD的bias和RMS均值分别为1.4 cm和9.4 cm,精度明显低于基于实测气象数据获得的GNSS-ZTD;4)参数融合法计算的PWV与GNSS-PWV精度相当,该方法可用于无实测气象参数时实时获取PWV。  相似文献   

12.
The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track archives and high resolution (1/4 degree) temperature analyses of the world's oceans in this paper In the monthly mean genesis positions of TCs from 1945 to 2005 in the SCS, the mean sea surface temperature (SST) was 28.8℃ and the mean depth of 26℃ water was 53.1 m. From the monthly distribution maps of genesis positions of TCs, SST and the depth of 26℃ water in the SCS, we discovered that there existed regions with SST exceeding 26℃ and 26℃ water depth exceeding 50m where no tropical cyclones formed from 1945 to 2005 in the SCS, which suggests that there were other factors unfavorable for TC formation in these regions.  相似文献   

13.
OCCAM global ocean model results were applied to calculate the monthly water transport through 7 straits around the East China Sea(ECS)and the South china Sea(SCS).Analysis of the features of velocity profiles and their variations in the Togara Strait,Luzon Strait and Eastern Taiwan Strait showed that;1)the velocity profiles had striped pattern in the Eastern Taiwan Strait,where monthly flux varied from 22.4 to 28.1 Sv and annual mean was about 25.8 Sv;2)the profiles of velocity in the Togara Strait were characterized by core structure,and monthly flux varied from 23.3 to 31.4 Sv,with annual mean of about 27.9 Sv;3)water flowed from the SCS to the ECS in the Taiwan Strait,with maximum flux of 3.1 Sv in July and minimum of 0.9 Sv in November;4)the flux in the Tsushima Strait varied by only about 0.4 Sv by season and its annual mean was about 2.3 Sv;5)Kuroshio water flowed into the SCS in the Luzon Strait throughout the year and the velocity profiles were characterized by multi-core structure.The flux in the Luzon Strait was minimun in June(about 2.4 Sv)and maximum in February(about 9.0 Sv),and its annual mean was 4.8 Sv;6)the monthly flux in the Mindoro Strait was maximum in December(3.0 Sv)and minimum in June(Only 0.1 Sv),and its annual mean was 1.3 Sv;7)Karimata Strait water flowed into the SCS from May to August,with maximum in-flow flux of about 0.75 Sv in June and flowed out from September to April at maximum outflow flux of 3.9 Sv in January.The annual mean flux was about 1.35 Sv.  相似文献   

14.
15.
In this paper, by using ocean surface temperature data (COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have important influences on the climate change of the whole globe and the relation between ENSO(E1 Nino-Southern Oscillation) and the Antarctic ice area is also discussed. The result indicates that in the tropical western Pacific and the Indian Oceans the change of Sea Surface Temperture (SST) is conspicuous both monthly and armaully, and shows different change tendency between them. This result may be due to different relation in the vibration period of SST between the two Oceans. The better corresponding relationship is obvious in the annual change of SST in the tropical Indian Ocean with the occurrence El Nino and LaNlra. The change of the SST in the tropical western Pacific and the tropical Indian Oceans has a close relation to the Antarctic ice area, especially to the ice areas in the eastern-south Pole and Ross Sea, and its notable correlative relationship appears in 16 months when the SST of the tropical western Pacific and the Indian Oceans lag back the Antarctic ice area.  相似文献   

16.
采用甘肃省CORS网和中国大陆构造环境监测网络中共48个台站的GPS观测数据,解算得到观测台站的垂直位移,并与GRACE时变重力场Mascon模型解CSR RL05M数据计算得到的垂直形变进行比较,分析区域地表垂直形变特征。结果表明,研究区内台站垂直形变存在局部特征,甘肃庆阳和平凉地区垂直形变与其他地区存在明显差异,相关系数、均方根减少量和周年信号减少量均高于其他地区;扣除趋势项后,观测台站GPS垂直位移与GRACE垂直形变时间序列相关系数均值为0.72,GPS和GRACE周年信号振幅均值分别为6.00 mm和3.70 mm,周年信号减少量和均方根误差减少量均值分别为0.51和0.29;研究区内GPS垂直位移和GRACE垂直形变时间序列一致性较强,GRACE垂直形变能有效解释50%以上的GPS垂直位移周年信号,GPS垂直位移时间序列包含的非构造形变中平均约29%来源于环境负载变化所引起的负荷形变。  相似文献   

17.
The Bohai Sea is one of the southernmost areas for sea ice formation in the northern hemisphere.Sea ice disasters in this body of water severely affect marine activities and the safety of coastal residents.In this study,we analyze the variation characteristics of the sea ice in the Bohai Sea and establish an annual regression model based on predictable mode analysis method.The results show the following:1)From 1970 to 2018,the average ice grade is(2.6±0.8),with a maximum of 4.5 and a minimum of 1.0.Liaodong Bay(LDB)has the heaviest ice conditions in the Bohai Sea,followed by Bohai Bay(BHB)and Laizhou Bay(LZB).Interannual variation is obvious in all three bays,but the linear decreasing trend is significant only in BHB.2)Three modes are obtained from empirical orthogonal function analysis,namely,single polarity mode with the same sign of anomaly in all of the three bays and strong interannual variability(82.0%),the north–south dipole mode with BHB and LZB showing an opposite sign of anomalies to that in LDB and strong decadal variations(14.5%),and a linear trend mode(3.5%).Critical factors are analyzed and regression equations are established for all the principal components,and then an annual hindcast model is established by synthesizing the results of the three modes.This model provides an annual spatial prediction of the sea ice in the Bohai Sea for the first time,and meets the demand of operational sea ice forecasting.  相似文献   

18.
The Bering Sea circulation is derived as a variational inverse of hydrographic profiles( temperature and salinity) , atmospheric climatologies and historical observation of ocean curents. The important result of this study is estimate of the mean climatological sea surface height (SSH) that can be used as a reference for satellite altimetry sea level anomaly data in the Bering Sea region. Numerical experiments reveal that, when combined with satellite altimetry, the obtained reference SSH effectively constrains a realistic reconstruction of the Amukta Pass circulation.  相似文献   

19.
INTRODUCTIONSincetheearly 1 970s,theAdvancedVeryHighResolutionRadiometer(AVHRR)onboardtheNationalOceanicandAtmosphericAdministration (NOAA)seriesofPolar orbitingOperationalEn vironmentalSatellites (POES)hasbeenusedforseasurfacetemperature (SST)retrievalandclou…  相似文献   

20.
Seasonality and causes of the Yellow Sea Warm Current   总被引:1,自引:0,他引:1  
To study the seasonality and causes of the Yellow Sea Warm Current (YSWC) in detail, rotated empirical orthogonal function (REOF) and extended associate pattern analysis are adopted with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH) datasets covering 1126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in the present paper. Results show that in the Yellow and East China Seas, the YSWC is a mean barotropic flow as compensation of winter-monsoon-driven surface currents, which has been directly observed. When East Asia winter monsoon weakens, so do the meridional pressure gradient of the surface seawater and the YSWC, while the transversal pressure gradient changes rather slowly that results in the YSWC left turning. In addition, there is southward mean flow compensation of summer-monsoon-driven surface currents, which actually was also directly ob-served.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号