首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
叶青—勒那曲引水线路根据地质构造、地貌特征、物理地质现象,共划分六个区段。德曲段:山脊寒冻风化碎石坡型,山坡融冻泥流及顺河断层发育;解吾曲下段:冻土沼泽发育,南北构造活动较强烈,区域稳定性及边坡稳定性较差;解吾曲上游段;山区和丘陵区断裂发育,在喜山末期有强烈的活动,滑坡、冰丘等不良地质现象极为发育;玛尕曲—洛曲南段:厚层地下冰发育,近期活动断裂明显;洛曲南岸—多曲东岸段:缓坡区有厚层地下冰,多年冻土布满全段;多曲东岸—万龙湾尕玛下游段:近代断裂活动明显,区域稳定性较差。  相似文献   

2.
高速滑坡具有运动速度快、波及范围广的灾害特征, 因此对滑坡启动、加速和静止整个运动过程进行研究很有必要。基于滑面力学特性将滑面分为弹性介质区和应变弱化区, 构建了高速滑坡二维力学模型, 提出了滑坡启动动能计算公式和滑坡运动过程的能量计算公式; 以千将坪滑坡为例, 采用启动动能计算公式得出滑坡的启动速度为2.35 m/s; 依据滑面形态将其运动轨迹划分为快速加速、平稳加速、平稳减速、急剧减速4个阶段, 进行运动过程分析, 得出滑坡最大速度为16.8 m/s, 以滑坡前缘高程所在平面为势能基准面, 分析不同能量与总能量占比的变化情况, 在滑坡的4个运动阶段中, 动能占比分别为9.1%, 25.6%, 15.1%, 0%;摩擦损耗能量占比分别为: 5.5%, 58.8%, 81.7%, 95.5%;势能占比分别为: 85.2%, 14.2%, 0%, 0%;其他阻力能耗占比分别为: 0.2%, 1.4%, 3.2%, 4.5%。研究结论对高速滑坡致灾机制和风险分析具有重要意义。   相似文献   

3.
In this paper, an attempt to analyse landslide hazard and vulnerability in the municipality of Pahuatlán, Puebla, Mexico, is presented. In order to estimate landslide hazard, the susceptibility,magnitude(area-velocity ratio) and landslide frequency of the area of interest were produced based on information derived from a geomorphological landslide inventory; the latter was generated by using very high resolution satellite stereo pairs along with information derived from other sources(Google Earth,aerial photographs and historical information).Estimations of landslide susceptibility were determined by combining four statistical techniques:(i) logistic regression,(ii) quadratic discriminant analysis,(iii) linear discriminant analysis, and(iv)neuronal networks. A Digital Elevation Model(DEM)of 10 m spatial resolution was used to extract the slope angle, aspect, curvature, elevation and relief.These factors, in addition to land cover, lithology anddistance to faults, were used as explanatory variables for the susceptibility models. Additionally, a Poisson model was used to estimate landslide temporal frequency, at the same time as landslide magnitude was obtained by using the relationship between landslide area and the velocity of movements. Then,due to the complexity of evaluating it, vulnerability of population was analysed by applying the Spatial Approach to Vulnerability Assessment(SAVE) model which considered levels of exposure, sensitivity and lack of resilience. Results were expressed on maps on which different spatial patterns of levels of landslide hazard and vulnerability were found for the inhabited areas. It is noteworthy that the lack of optimal methodologies to estimate and quantify vulnerability is more notorious than that of hazard assessments.Consequently, levels of uncertainty linked to landslide risk assessment remain a challenge to be addressed.  相似文献   

4.
The Himalayan region has been severely affected by landslides especially during the monsoons. In particular, Kalimpong region in Darjeeling Himalayas has recorded several landslides and has caused significant loss of life, property and agricultural land. The study region, Chibo has experienced several landslides in the past which were mainly debris and earth slide. Globally, several types of rainfall thresholds have been used to determine rainfall-induced landslide incidents. In this paper, probabilistic thresholds have been defined as it would provide a better understanding compared to deterministic thresholds which provide binary results, i.e., either landslide or no landslide for a particular rainfall event. Not much research has been carried out towards validation of rainfall thresholds using an effective and robust monitoring system. The thresholds are then validated using a reliable system utilizing Microelectromechanical Systems(MEMS) tilt sensor and volumetric water content sensor installed in the region. The system measures the tilt of the instrument which is installed at shallow depths and is ideal for an early warning system for shallow landslides. The change in observed tilt angles due to rainfall would give an understanding of the applicability of the probabilistic model. The probabilities determined using Bayes' theorem have been calculated using the rainfall parameters and landslide data in 2010-2016. The rainfall values were collected from an automatic rain gauge setup near the Chibo region. The probabilities were validated using the MEMS based monitoring system setup in Chibo for the monsoon season of 2017. This is the first attempt to determine probabilities and validate it with a robust and effective monitoring system in Darjeeling Himalayas. This study would help in developing an early warning system for regions where the installation of monitoring systems may not be feasible.  相似文献   

5.
唐苏芹  曾理 《山东国土资源》2014,30(3):78-81,85
东平县大洪顶山岩溶地貌类型属岩溶山地地貌单元,山坡顶部及陡峭坡段岩石裸露,岩溶裂隙发育,岩体切割破碎,边坡陡立。区内岩溶洞穴发育,岩溶景观资源众多。目前已发现的溶洞有6处,大洪顶山南坡3处,北坡3处,溶洞口出露位置呈NWW向展布,北部九仙洞已探测长度1 862 m,南部神仙洞已探测长度2 052.50 m,溶洞内岩溶景观发育不均匀,发育有石笋、石钟乳、石幔、石帽、边石等。区内岩溶洞穴发育规模宏大,景观资源丰富,属鲁西地区发育规模最大的溶洞,在北方地区具代表性、典型性、稀有性,属我国北方地区不可多得的地质自然遗产,具有良好的开发前景及旅游价值。  相似文献   

6.
Kharsali village, located in the Northwest Himalaya near the confluence of the Yamuna River and Unta Gad, is situated on a thick(150 m) paleolandslide deposit. The village is continuously being eroded at its base by the two rivers. Cracks are noted in most houses while the ancient Shani Temple lying to the south of the village has tilted ~5° towards the northeast. Three slope sections(S-1, S-2, S-3) were modelled and analysed to determine the displacement and shear strain patterns of the slopes. Based on surface failure conditions, potential slope instability of the Kharsali village was evaluated from 2D Finite Element Method(FEM) using Shear Strain Reduction(SSR) analysis in the Phase2 software. Results indicate a critical Stress Reduction Factor(SRF) of 1.5 for the southern edge of the village(S-1) housing the Shani Temple. The development of failure surfaces at its lower portion signifies the propagating, progressive nature of the slope. The S-2 slope section is most vulnerable to slope failure, with a critical SRF of 1.08. This has been inferred by the formation of failure surfaces with displacements of 0.05-0.08 m. The S-3 section in the northern part of the Kharsali shows highest critical SRF of 2.76. The un-metalled road section in the north of the village near S-3 hasdeveloped a failure surface with displacement of 0.003-0.004 m, and a zone of subsidence. The S-3 section is relatively stable, whereas the S-2 section is the most vulnerable portion of the village.  相似文献   

7.
本文探讨广西古岩溶期序及各期古岩溶发育特征。以构造运动名称命名,将广西古岩溶划分为:郁南—广西、柳江、黔桂、东吴、苏皖、印支等六个古岩溶期。它门的共同特点是:都保留有完好的古剥蚀面;剥蚀面上岩溶现象明显;其上沉积有剥蚀期的典型堆积物,诸如铝土岩(矿)、砾岩或砂砾岩等。其主要不同点是:剥蚀面下古岩溶发育强度和古溶洞层厚度有差异;溶洞充填物不同:剥蚀面的起伏高度相差较大,除印支期古剥蚀面起伏较大具古潜山性质外,其余各期古剥蚀面起伏都较小。古地形多属波状平原性质。  相似文献   

8.
This study examined the thermal effects of building‘s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December,south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.  相似文献   

9.
滑坡变形演化特征一直是滑坡灾害预测与防治领域急需解决的关键问题, 但对于多层滑带滑坡的变形演化特征却少有研究。以物理模型试验为手段建立了三层滑带滑坡物理试验模型, 完成了多层滑带滑坡变形演化全过程的模拟。基于PIV技术获取坡表位移数据, 通过柔性测斜仪监测滑坡深部位移, 同时布设土压力盒获取滑坡内部土压力的变化情况, 实现了多层滑带滑坡演化过程多参量数据分析。试验结果表明, 多层滑带滑坡破坏过程可分为初始、等速、加速和破坏4个阶段。不同破坏阶段滑坡的主要变形区域不同, 下层滑体受到上层滑体牵引作用, 在重力和推力作用下滑坡变形逐渐向浅层发展。变形过程中滑坡应力逐渐向滑带集中, 滑坡推力沿埋深方向呈多级梯形分布。加速变形阶段滑带处应力迅速增大, 滑坡体内产生多层应力集中带, 滑带位置推力变化与滑坡位移显著相关。   相似文献   

10.
?????????????InSAR?????е????????????????????ζ??α??????????????????????????????????????о?????????????????ALOS PALSAR???????????????????α????????????????????????ALOS PALSAR?????????3??5 m???????е???????????£??α?????????????????????о?????????????????С?????????????????????DEM?????????£?SRTM DEM????????ALOS PALSAR??????????1cm???α???????????????????С??400 m??  相似文献   

11.
气候变化情景下极端降水事件的频次和强度预估呈增加趋势,这会导致全球部分地区极端降雨诱发地质灾害风险的增加。本文基于中国降雨诱发地质灾害易发性模型和不同地貌分区的累积事件降雨量-降雨历时阈值曲线,采用最新的CMIP6全球气候模式多模式集合结果,基于全球温升目标情景的视角,从地质灾害空间易发性和发生频次两方面,探讨温升情景下中国地质灾害危险性的可能变化及其对暴露人口的潜在影响。结果表明,CMIP6多模式集合预估的多年平均降水在温升1.5℃和2.0℃情景下相比基准时期可能增加5.4%~9.5%,导致中等至极高地质灾害易发区范围预估增加0.33%~0.74%,由于预估的极端降水事件增加,地质灾害发生频次预估增加7.0%~11.2%,进一步综合未来人口空间分布,潜在地质灾害暴露人口可能增加6.20亿人次(18.90%)和4.26亿人次(12.97%)。各地貌分区未来情景下地质灾害危险性预估增加且存在显著的空间异质性,温升2.0℃情景下中等至极高易发性范围相比基准时期增加0.71%~1.28%,地质灾害发生频次预估增加1.2%~15.6%,其中,青藏高原区地质灾害危险性增加最明显。综合考虑未来人口...  相似文献   

12.
将山西地区划分为北部、中部和南部3个区域,利用2009~2019年山西省及周边50 km范围内的地震事件波形资料,使用线性拟合、折合走时及Hyposat批量定位等方法确定各分区的地壳速度模型。采用批量定位比较残差、PTD方法测定震源深度及非天然地震事件检验等方法对分区模型进行验证,结果显示,相对山西2015速度模型,分区模型的适用性更佳,两者的差别主要体现在P波在上地壳和莫霍面的传播速度及莫霍面深度方面。分区模型显示,P波在上地壳的传播速度由北向南逐渐变小,而在莫霍面的速度则逐渐变大,莫霍面深度表现为北厚南薄。北部区域上地壳速度偏高,莫霍面速度偏低,地壳厚度较厚,可能是受大同火山的影响;南部区域上地壳速度偏低,推测是由于巨厚沉积层所致。  相似文献   

13.
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography (ERT), Terrestrial Laser Scanning (TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part (0~41 m) of the landslide was greater than in the central-front part (41~84 m) and (2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure: (1) gully erosion at the slope surface; (2) shallow sliding failure; (3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement (using traditional methods) indicated that long duration light rainfall (average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding (30.09 mm/d) during the critical failure sub-phase (EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.  相似文献   

14.
高密度电阻率法是一种成熟的工程物探方法,广泛应用于地质灾害调查。废弃矿山在不良天气条件下容易产生滑坡地质灾害。对由废弃渣石、杂填土人工堆积形成的滑坡体进行勘察,研究高密度电阻率法在该环境下的勘察效果。通过对视电阻率反演断面图分析,推断滑动面深度、滑床起伏形态等滑坡体地质结构信息,为废弃矿山滑坡灾害治理设计提供依据。钻探验证表明,高密度电阻率法有效的推断出滑坡体滑动面深度、滑床起伏形态信息,可用于废弃矿山滑坡灾害勘察。  相似文献   

15.
The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides. Loose landslide materials were deposited on hillslopes, and deep channels were easily remobilized and transformed into debris flows by extreme rainstorms. Twelve years after the Wenchuan earthquake, debris flows were still active in the Qipangou Ravine in the quake-hit area. In this paper, we continuously tracked the spatiotemporal evolution of the landslides and vegetation restoration and evaluated the evolution of debris flow activity in the Qipan catchment with the aid of a GIS platform and field investigations from 2008 to 2019. We observed that the area with active landslides increased sharply immediately following the earthquake, and then decreased with time; however, the total area of landslides continued to increase from 6.93 km2 in 2008 to 10.55 km2 in 2019. The active landslides shifted towards lower angles and higher elevations after 2013. Since 2009, the vegetation coverage has been gradually increasing and approaching the coverage present before the earthquake as of 2019. The landslide activity was high and the vegetation recovery rates were rapidly rising during the first five years after the earthquake; the recovery rates then slowed over time. Therefore, we divided the evolution that occurred during the post landslide period into an active period(2008-2013), a self-adjustment period(2013-2026) and a stable period(after 2026). We then proposed a quantitative model to determine the trends of landslide activity rates and NDVI values in the catchment, which indicated that the landslide activities and postseismic vegetation restoration rates in this catchment will return to preseismic levels within approximately two decades. We also analysed the runout volumes of the debris flows after the earthquakes(Diexi and Wenchuan) and the standard deviation of the vegetation coverage and predicted that the debris flow activities will last for an additional 50 years or more.  相似文献   

16.
自20世纪80年代开始,由于地层结构松散、固结程度低,地下水超采等原因,鲁西北平原区地面沉降持续发展。年沉降速率最快的区域位于东营南部的广饶县、滨州南部的博兴县和聊城东部的茌平区附近。德州地面沉降漏斗与周边沧州、衡水沉降区连成一片,成为鲁西北平原区最为典型的地面沉降发育区。其中德州城区国棉厂监测点1991—2017年累计沉降量已超过1400 mm。该文简要介绍了德州分层标组施工工艺、监测方法,综合利用水准测量及分层标监测数据,开展了分层沉降特征研究,查明分层标组所在区域0~60 m,60~300 m,300~500 m及500 m以深地层因压缩变形引起的地面沉降速率分别为1.67 mm/a,20 mm/a,18.33 mm/a,8.00 mm/a。对引起地面沉降的主要因素进行了简要分析,对德州城区地面沉降监测工作提出了建议。  相似文献   

17.
文章分析了湖南平江县花岗岩地区滑坡,在地形地貌、地层岩性、地质构造、水文地质条件、滑坡体、滑动面、滑动多期性等方面的典型特征。由于地表水和地下水是花岗岩地区滑坡中的主要影响要素,因此,提出对该类型滑坡应采用排水工程为主,并和其它防治措施相结合的方法进行防治。换言之,排水工程是滑坡防治中单独的一项措施,其效果应在同步进行的滑坡监测中予以验证。在滑坡治理的过程中,滑坡监测始终是滑坡防治的基础,防治的效果也需要监测工作来检验。  相似文献   

18.
泗水县南部发现了历史上记载的古代名石"泗滨砭石",在泗水县迅速兴起了砭石研究、开发和加工热。该区通过地质测量、放射性测量、地表工程和各类样品的分析测试,大致对泗水县南部地质特征和砭石特征进行了调查了解。"泗滨砭石"产于泗水县南部的低山丘陵区,矿体赋存于寒武纪馒头组石店段地层中,呈层状产出,地表分布3个矿带,10个矿体,矿层产状同围岩产状一致,走向NW,倾向NE,倾角8°~27°,矿层厚度0.5~1.8m,厚度稳定。向NE矿层隐伏于地下,埋深逐渐加大。岩性为紫红色、黄褐色纹层状微晶灰岩,主要矿物成分为方解石,另有少量的泥质、氧化铁质、有机质、石英等。矿床成因为沉积变质型。该文旨在通过对泗水县砭石的成矿地质特征和矿体特征进行分析研究,探讨其控矿作用,总结其成矿规律,以期对泗水县南部砭石的找矿有所启示。  相似文献   

19.
The use of LIDAR-derived shaded relief maps led to the identification of all potential landslide areas in a hilly region in Northern Bavaria (1590 km2), Germany. Every possible structure was investigated by field investigation which resulted in a detailed database of 1002 landslides within the study area. The analysis of geological, lithological, topographical and morphological properties (spatial ratio, lithological and geological setting, length/width distribution, material properties and slope angle) revealed characteristic appearances of the landslides and possible relationships between different aspects. Strong relations between the lithological setting, spatial ratio of the mapped landslides and distribution of slope angle could be observed. This study shows the value of high-resolution shaded relief maps for detecting and mapping landslides in a large area with comparatively little work and time in comparison to the traditional approach to mapping. It reveals that many landslides were not known before. Landslides are much more common in Northern Bavaria and have a higher influence on the denudation rate of the Franconian Alb than expected before.  相似文献   

20.
识别滑坡须先了解什么是滑坡,广义滑坡包括崩塌、滑坡、碎屑流、泥石流等所有斜坡重力侵蚀现象;狭义滑坡指部分斜坡沿着斜坡内的一个或数个面在重力的作用下作剪切运动的现象。各类滑坡有自已特殊的地表形态特征,发育的基本地质环境条件和触发因素,据这些特征识别滑坡。利用数字滑坡技术进行滑坡识别大致分为2步:(1)通过RS和GIS技术将不同时间的调查区地物现场以不同分辨率展现在数字图像上,并与地理控制及地质环境信息配准、组合,建立解译基础;(2)在滑坡地学理论指导下,通过人机交互方式进行解译和时空分析,获取减灾防灾需要的信息。该方法尚未达到遥感自动识别滑坡的程度,但建立解译基础的过程已可由计算机通过多种程序软件完成,故认为滑坡模式识别的前2个步骤:数字化及预处理已由计算机实现。现需探索的是用计算机实现基于滑坡地学理论知识,以人机交互方式进行的滑坡识别及分析过程。就狭义滑坡而言,基于DEM的滑坡地形识别已可由计算机实现。如能确定地面滑坡壁及滑体与地下滑面、滑床的关系,了解它们的光谱特征并建立计算模型,便可构建遥感技术的滑坡模式识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号