首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 191 毫秒
1.
GF-6 WFV影像具有宽覆盖、高时空分辨率、高光谱分辨率等特点,目前在农业和林业遥感领域都有一定应用,但是在水质遥感中的应用潜力还缺乏系统的评估。本文以潘家口和大黑汀水库为研究区,采用2019年9月24—25日获取的潘家口和大黑汀水库叶绿素a浓度、实测遥感反射率和准同步GF-6 WFV影像,构建了潘家口和大黑汀水库叶绿素a浓度经验反演模型,探索GF-6 WFV在内陆水体叶绿素a浓度遥感监测中的应用潜力。研究结果表明,基于GF-6 WFV模拟光谱构建的潘家口和大黑汀水库叶绿素a浓度经验模型决定系数均在0.90以上,GF-6 WFV影像在水体叶绿素a遥感监测中具有应用潜力,尤其是新增的黄波段和红边波段1,有助于提高GF-6 WFV影像叶绿素a浓度遥感监测能力;GF-6 WFV影像大气校正误差降低了叶绿素a浓度遥感监测精度,GF-6 WFV影像水体大气校正精度有待改进,以提升GF-6 WFV影像水质遥感监测能力。  相似文献   

2.
浮游藻类的后向散射是水体光谱构成的重要组成部分,作为水体辐射传输模型中的重要参数,高精度的藻类后向散射系数对水体叶绿素a浓度的遥感反演精度至关重要。本文以简化的辐射传输模型-生物光学模型为基础,尝试性分离了太湖浮游藻类的后向散射系数。通过藻类后向散射规律分析,建立了浮游藻类吸收、后向散射特征的叶绿素a反演模型,改善了叶绿素a浓度的遥感反演精度。分析表明:藻类颗粒物的后向散射系数与吸收系数之间存在反比关系,且在560 nm、700 nm附近存在明显的散射峰,与叶绿素a浓度之间相关性显著;低密度藻类水体总悬浮颗粒的后向散射以非色素颗粒为主导,适合采用经典的指数模型模拟后向散射系数,而藻类密度较高的富营养化水体,水体总悬浮颗粒的后向散射以藻类颗粒为主导,传统的指数模型已不适用;采用分离藻类后向散射系数的方法,使得叶绿素a浓度的反演值与真实值相关系数从0.66提高到0.98,相对误差从55%降低到38%,均方根误差(RMSE)也由60.95 μg/L降低至13.98 μg/L。其真实性检验表明,与经典指数模型方法相比,利用藻类颗粒后向散射分离方法反演叶绿素a浓度,能够显著改善反演精度。  相似文献   

3.
悬浮物浓度(TSM)是水生态环境评价的重要参数之一,及时掌握河流悬浮物浓度动态变化信息对于内陆水质监测、水环境治理是十分必要的。本研究基于野外实测光谱和悬浮物浓度数据,筛选与悬浮物浓度高度相关的波段组合反射率作为自变量,基于CatBoost、随机森林和多元线性回归算法构建悬浮物浓度遥感反演模型,采用带交叉验证的网格搜索法分别对CatBoost和随机森林2种机器学习模型进行超参数调优,确定模型最优参数配置,并对比不同模型反演精度,确定最优模型。基于最优模型,利用2019—2020年多时相Sentinel-2 MSI遥感影像,反演闽江下游悬浮物浓度,并分析其时空变化特征。结果表明:① b4/b3、(b6-b3)/(b6+b3)、(b4+b8)/b3、(1/b3-1/b4)×b5是MSI反演闽江下游TSM浓度的最佳波段组合反射率; ② 对比其他2种模型,基于超参数优化的CatBoost算法建立的悬浮物反演模型精度最高,其决定系数R²为0.95,均方根误差RMSE和平均绝对百分比误差MAPE分别为15.32 mg/L和19.68%; ③ 2019—2020年闽江下游悬浮物浓度分布“西低东高”,白沙至琅岐入海口呈升高趋势;④ 悬浮物浓度夏季最高,冬季和秋季次之,春季最低。本研究可为闽江下游悬浮物浓度监测及时空变化分析提供一种有效的技术手段和理论参考。  相似文献   

4.
基于表观光学法研究冬季湛江港海域高光谱遥感叶绿素a浓度的反演模型构建,结果表明,该海域单波段遥感反射率与叶绿素a浓度相关性低,波段比值和遥感反射率的一阶微分法可提高叶绿素a浓度反演精度。665nm处的遥感反射率一阶微分值与叶绿素a浓度相关性良好,相关系数可达0.84。一阶微分相关系数大于0.8的波段大部分处于叶绿素a红光强烈吸收区域,对于富营养化的湛江港海域采用一阶微分方法构建叶绿素a浓度的遥感反演模型具有合理性。  相似文献   

5.
叶绿素a作为一项重要的水质安全评价指标,其浓度的准确监测对水产行业发展、水生态系统平衡和人类饮水安全等有着重要意义。随着对地观测卫星传感器空间和光谱分辨率的提高,遥感技术在河流水质时空变化监测中发挥着越来越重要的作用。本文以新疆巴音布鲁克湿地河流水体为研究对象,同步采集了水体反射光谱和水样,并在实验室对叶绿素a、浊度等水质参数进行测定。首先,基于光谱波段对叶绿素a浓度的敏感性分析,构建了多种光谱指数模型;然后,提出以4.50 mg/m3作为水体叶绿素a浓度分级阈值,利用三波段半分析模型因子D3B与叶绿素a的线性关系建立水体叶绿素a浓度分级标准,进而对比评估了11种经验、半分析模型分别在全部样本数据集和两级叶绿素a浓度数据集中的精度表现;其次,根据各模型精度结果选用三波段半分析模型D3B和蓝绿波段比模型OC2V4,组成叶绿素a分级反演算法OC2-D3B,其精度(R2=0.96,RMSE=0.32 mg/m3,MAE=0.24 mg/m3,MRE=5.71%)相比以上2种单一算法提高了50%以上;最后,本文利用Sentinel-2影像,对湿地河流水体叶绿素a浓度的空间分布特征和季节时序模式进行了分析,得到该水域夏季叶绿素a含量最高,春秋季次之,冬季最低的结论。此外,本研究还发现气温相比其他环境因子对水体Chl-a浓度的控制作用更加明显。  相似文献   

6.
富营养化的太湖水体叶绿素a浓度模型反演   总被引:8,自引:0,他引:8  
半经验模型反演叶绿素a浓度是目前遥感反演水体叶绿素a浓度的主要方法。但是,大量研究结果表明,太湖水体浑浊,富营养化严重,各种半经验模型的反演精度和模型适用性有较大差异。因此,研究一种既满足一定精度要求,又具有时间普适性的叶绿素a浓度反演算法,对提高模型适用性,促进遥感的反演应用具有重要意义。本研究通过2005年6-10月地面实测数据,建立太湖叶绿素a浓度一阶微分反演模型、波段比值反演模型和三波段反演模型,对比各模型反演效果,认为波段比值模型与三波段模型具有较好的反演效果。运用2006年11月和2007年11月实测数据对这三种模型加以检验,结果表明,三波段模型反演高富营养化的太湖水体,不仅精度高,平均误差仅为实测浓度差的8.3%,而且适用性较强,不同年份数据的检验结果证明平均误差均低于实测浓度差的20%。因此,三波段模型是这三种反演模型中效果最好的一类模型。  相似文献   

7.
内陆水体叶绿素a浓度是衡量水体富营养化程度的主要指标,是影响水体反射率光谱特征的重要因素之一。本文以白洋淀烧车淀、圈头乡各村庄等水域为研究区,采集了高光谱数据和水样,并在实验室测定叶绿素a等水质参数,应用于白洋淀区域的叶绿素a高光谱遥感反演。针对线性降维方法特征提取能力不足和神经网络构建叶绿素a遥感反演模型时学习效率低、泛化能力差的问题,提出了堆栈自编码器粒子群优化BP神经网络模型。该模型利用堆栈自编码器强大的非线性变换能力,通过最小化重构误差来学习高光谱数据特征,在实现数据降维的同时最大程度保留原始光谱数据中的水体辐射信息,提取出实测水体光谱的深度特征,将BP神经网络初始权重作为粒子的位置向量,通过粒子群算法搜寻网络初始权重的最优值,降低出现局部极值的概率,提高模型的稳定性和反演的精确度。堆栈自编码器粒子群优化BP神经网络模型(R2=0.82,RMSE=2.65μg/L,MAE=1.89μg/L)相较于对高光谱数据不降维的BP神经网络模型(R2=0.75,RMSE=3.16μg/L,MAE=2.39μg/L)、基于主成分分析法降维的BP神经...  相似文献   

8.
芒萁是南方红壤侵蚀区生态恢复重要的地带性草本植物,对生态系统修复具有重要作用,监测其叶绿素含量能有效诊断生长健康状况。本文以福建省长汀县朱溪流域6个不同生态恢复年限下的芒萁叶片高光谱反射数据以及实测叶绿素含量为数据源,借助高光谱遥感技术分析不同恢复年限芒萁叶片原始光谱特征,筛选出光谱敏感波段并构建光谱指数,基于相关性分析,建立芒萁叶绿素单变量以及多元逐步回归模型,并确定最佳估算模型。结果表明:高光谱指数建立的单变量估算模型中,改进红边归一化植被指数(mNDVI705)、叶面叶绿素指数(LCI)、红边指数(Vog)、比值光谱指数(RVI603/407)、NDVI[603,407]高光谱指数建立的二次模型精度高,建模决定系数R2均超过了0.8,其中以高光谱指数为自变量建立的多元回归模型拟合R2值(0.886)最高。综合建模精度和模型验证精度,LCI指数构建的单变量模型以及基于高光谱指数的多元回归模型是估算芒萁叶片叶绿素含量最佳模型。本研究建立的叶绿素高光谱估算模型对快速、无损地监测水保植物芒萁生长具有重要意义。  相似文献   

9.
为研究不同波段宽度遥感数据对监测水体叶绿素a含量的影响,以太湖水体实测高光谱遥感反射率数据为基础,分析计算不同波段宽度下遥感反射率的归一化值与叶绿素a浓度之间的相关系数。随着波段宽度在75.93nm范围内不断递增,最大相关系数逐渐减小,最大正相关波段向长波方向移动,最大负相关波段向短波方向移动。而波段宽度在31.6nm范围内变化时,最大正相关波段和最大负相关波段都会保持相对稳定。通过对不同波段处相关系数平均值和标准差的对比分析认为,718.77~34.58nm为叶绿素a遥感监测的最佳波段范围。这将对遥感传感器的波段设置,以及实际水体叶绿素a遥感监测时的波段选择,具有重要的参考价值。  相似文献   

10.
混合像元是遥感影像中普遍存在的一种现象,对其组成和各成分比例的反演一直是遥感研究中的重难点,而国内利用偏振植被指数对混合像元的研究几乎没有涉及。本次研究通过对不同面积比例的植被-土壤混合像元偏振反射高光谱特征进行分析,讨论不同条件下的植被-土壤混合像元偏振高光谱特性,并利用偏振反射比计算了12种0°偏振态下的偏振植被指数,分别构建了植被指数与植被面积比例以及光谱特征参数与植被面积比例的数学模型。结果表明,混合像元中植被面积比例和偏振角均对其偏振高光谱有一定的影响;865 nm的偏振反射比与植被占像元面积比例的相关性最好,采用多项式进行拟合时,其决定系数达到0.99,适合进行植被占像元面积比例的反演;偏振光谱“红边”处的一阶微分值与植被像元比例存在良好的线性相关,R2=0.974;植被面积比例与植被指数和光谱特征参数呈现良好的相关关系,其中P-DVI和光谱吸收指数(SAI)与植被面积比例的拟合效果最好,决定系数分别为0.99以及0.94,适合进行植被-土壤混合像元中植被面积比例的反演。  相似文献   

11.
【目的】比较分析湛江近海有色溶解有机物(CDOM)的不同反演算法,并将最佳算法应用于卫星遥感数据,了解湛江近海CDOM空间分布。【方法】基于湛江湾及邻近海域的海上观测资料,利用QAA-E、QAA-Dong和QAA-CDOM三种经典半分析算法以及经验算法反演湛江近海CDOM浓度。【结果与结论】QAA-CDOM算法在三种经典半分析算法中精度最高,平均相对误差(MRE)为28.8%,均方根误差(RMSE)为0.07。同时,利用Rrs(665)/Rrs(444)与a_g(440)进行回归分析,建立CDOM反演的经验算法,决定系数为0.65,验证点的MRE为26.5%,RMSE为0.07。将经验算法应用到Sentinel-2卫星数据,得到CDOM反演空间分布图,显示鉴江口CDOM浓度较高,而硇洲岛附近及离岸较远的海域CDOM浓度较低。  相似文献   

12.
基于我国首颗全极化雷达卫星高分三号(GF-3)和Landsat8数据,研究浓密植被覆盖地表土壤水分反演方法。为了提高浓密植被覆盖地表土壤水分反演精度,首先利用PROSAIL模型、实测植被参数及Landsat8光学数据分析了8种植被指数与植被冠层含水量的相关性,从中优选出归一化差异水指数(NDWI5)用于反演植被冠层含水量,并通过分析植被含水量和植被冠层含水量的关系,构建植被含水量模型;然后结合植被含水量反演模型和简化MIMICS模型校正了植被对雷达后向散射系数的影响,最后基于AIEM建立裸土后向散射系数模拟数据集,发展一种主动微波和光学数据协同反演浓密植被覆盖地表土壤水分模型,并以山东省禹城市为研究区,实现了玉米覆盖下HH、VV和HH+VV 3种模式土壤水分反演。实验结果表明: ① NDWI5为最佳植被指数,对于去除植被影响有较好效果;② 基于此方法,利用GF-3和Landsat8卫星数据反演得到的土壤水分具有较高的精度;③ 相比HH和VV两种极化模式,HH+VV双通道模式对土壤水分反演结果更好,决定系数(R2)为0.4037,均方根误差(RMSE)为0.0667 m 3m -3。  相似文献   

13.
疟疾是世界上最严重的一种寄生虫疾病,安徽省是典型的中纬度疟疾高发区域之一。本文以安徽省县级行政单元统计的疟疾发病率为例,从遥感监测数据中获取疟疾潜在驱动因素的数据,使用遗传规划方法建立遥感监测的环境因素与疟疾发病率之间的关系,从而预测疟疾发病率的空间分布,并分析预测结果、评价模型精度。结果表明,遗传规划方法预测的疟疾发病的精度(训练数据的预测R2 = 0.558,检验数据R2 = 0.429)较线性逐步回归方法的预测精度(训练数据的预测R2 = 0.470,检验数据R2 = 0.408)有所提高。遗传规划方法有利于提高预测疟疾发病率空间分布的精度。其为使用遥感监测数据预测疟疾的空间分布和变化的科学研究提供依据。  相似文献   

14.
利用遥感技术监测水体悬浮泥沙含量是海洋水色遥感的一个重要研究方向。本文以曹妃甸近岸海域4个剖面35个站点开展的现场光谱测量、同步采集的不同深度悬浮泥沙含量样品数据为基础,采用Landsat-5 TM遥感数据,建立水体表、中、底层悬沙含量遥感反演模型,并研究悬沙垂向上的空间分布规律。结果表明,曹妃甸近岸海域泥沙含量在垂向上有明显的相关性,以Landsat-5 TM影像反射率比值(RTM3/RTM2)为因子,构建优化的悬浮泥沙含量遥感反演模型,各层模型平均相对误差都在30%以内,表层和中层的平均绝对误差在6 mg/L以下,均方根误差小于10 mg/L,底层的精度略低于表层和中层。研究结果为进一步研究海洋环境泥沙运移规律、优化水动力作用下泥沙运移模型提供支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号