首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.  相似文献   

2.
A review on rill erosion process and its influencing factors   总被引:8,自引:0,他引:8  
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.  相似文献   

3.
Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards(25° of slope inclination). In the vineyards of the Montes de Málaga(southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways(between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions(a motor driven pump that discharged water flows up to 1.33 l s~(-1) for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds(between 0.16 m s-1 and 0.28 m s~(-1)) and sediment concentrationrates(up to 1538.6 g l~(-1)) than typically found in other Mediterranean areas and land uses(such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.  相似文献   

4.
泥质砂岩残积土作为一种结构性很强的特殊土, 具有崩解性强、抗冲蚀性差以及扰动性极大的特点, 对工程建设有较大影响。为了探究泥质砂岩残积土边坡降雨冲刷机理, 设计了边坡降雨冲刷试验, 通过现场三维激光扫描技术测试分析了其表面冲刷效应; 利用高密度电法进一步明确了泥质砂岩残积土边坡的入渗特性、表面冲刷演化机制及冲刷破坏机理。结果表明: 冲刷试验的最初阶段, 降水入渗强且主要向坡脚处运移, 坡表未形成明显的细沟; 冲刷试验中期, 坡脚处土体最先达到饱和而形成坡面径流, 细沟贯通扩大形成小规模冲槽以及片蚀区; 冲刷试验后期, 坡面中部和坡脚处土体冲蚀严重, 坡脚处的冲槽向上部延伸, 片蚀区扩大, 导致表层土体结构发生变化, 渗透性差异明显; 泥质砂岩残积土坡体降雨冲刷主要划分为表层溅蚀、下层潜蚀和细沟贯通3个阶段, 坡面土体流失主要发生在最后一个阶段, 细沟率达到最高值16.9%, 细沟贯通率也高达0.74。研究结果可以为深入探讨泥质砂岩残积土边坡冲蚀防护和研究冲蚀防护机理提供基础资料。   相似文献   

5.
Raindrop size,rainfall intensity and runoff discharge affect the detachment and transportation of soil particles.Among these three factors,the rainfall intensity seems to be more important because it can change other two factors.Storm patterns can be determined by changing the rainfall intensity during the storm.Therefore,the objective of this research is to test the influence of storm pattern on runoff,soil erosion and sediment concentration on a rangeland soil slope under field rainfall simulation.Four storm rainfall intensity patterns were selected for examining the effects of variations in storm event characteristics on soil erosion processes.The selected storm patterns were:I(45,55 and 70 mm h-1);II(45,70 and 55 mm h-1);III:(70,55 and 45 mm h-1);and IV(55,45 and 70 mm h1).The last pattern is a new one instead of the uniform pattern which has been sufficiently studied in previous researches.The experiments were conducted in field plots(in Kojour watershed,Mazandaran Province,Iran)with an area of one square meter and an constant slope gradient of 18%,surrounded by galvanised sheets.Following the nonuniform prioritization of the storm patterns for the studied variables,time to runoff(I>II>IV>III),runoff volume(III>IV>II>I),sediment concentration(IV>III>I>II)and soil erosion(III>IV>II>I)),it can be generally inferred that each pattern has specific effect on soil erosion processes during a storm.The results of the general linear model(GLM)test indicated that the effects of storm pattern on time to runoff,total runoff volume,runoff coefficient and soil erosion were significant at a level of 99%.The Duncan test showed that the storm patterns can be divided into three groups of III,IV;II;I(for time to runoff),I,II;IV,III(for runoff coefficient),and I;II;IV,III(for runoff volume and soil erosion).  相似文献   

6.
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m~2) for bare soil plots and from 5.61 to 84.58 g/(min·m~2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.  相似文献   

7.
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.  相似文献   

8.
The water erosion prediction project(WEPP) model is a popular water erosion prediction tool developed on the basis of the physical processes of water erosion.Although WEPP has been widely used around the world,its application in China is still insufficient.In this study,the performance of WEPP used to estimate the runoff and soil loss on purple soil(Calcaric Regosols in FAO taxonomy) sloping cropland was assessed with the data from runoff plots under simulated rainfall conditions.Based on measured soil properties,runoff and erosion parameters,namely effective hydraulic conductivity,inter-rill erodibility,rill erodibility,and critical shear stress were determined to be 2.68 mm h-1,5.54 × 106 kg s-1 m 4,0.027 s m 1 and 3.5 Pa,respectively,by using the recommended equations in the WEPP user manual.The simulated results were not good due to the low Nash efficiency of 0.41 for runoff and negative Nash efficiency for soil loss.After the four parameters were calibrated,WEPP performed better for soil loss prediction with a Nash efficiency of 0.76.The different results indicated that the equations recommended by WEPP to calculate parameters such as erodiblity and critical shear stress are not suitable for the purple soil areas,Sichuan Province,China.Although the predicted results can be accepted by optimizing the runoff and erosion parameters,more research related to the determination of erodibility and critical sheer stress must be conducted to improve the application of WEPP in the purple soil areas.  相似文献   

9.
Soilerosionisoneofthemostseriousenvironmentalproblemsinthepresentworld.Itnotonlyrestrictstheproductionofagriculturebadly,butalsothreatensthenaturalenvironmentonwhichhumanbeinglive.Andthismakethemankindconfrontedwithtremendouschallenge.OntheLoessPlateau,soilandwaterlossisterrible,environmentisweak,anditshighsandyieldmakestheriverwayinthelowerreachesoftheHuanghe(Yellow)Riverfilledup,riverbeddrivenup,floodthreatprickedup,andresultsingreathiddentroublestothecontrollingoffloodandtherunningofirrig…  相似文献   

10.
Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I 30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I 30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and I 30 values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI 30 (Product of P and I 30) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and PI 30 with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.  相似文献   

11.
Purple soil is highly susceptible for overland flow and surface erosion, therefore understanding surface runoff and soil erosion processes in the purple soil region are important to mitigate flooding and erosion hazards. Slope angle is an important parameter that affects the magnitude of runoff and thus surface erosion in hilly landscapes or bare land area. However, the effect of slope on runoff generation remains unclear in many different soils including Chinese purple soil. The aim of this study was to investigate the relationship between different slope gradients and surface runoff for bare-fallow purple soil, using 5 m × 1.5 m experimental plots under natural rainfall conditions. Four experimental plots(10°, 16°, 20° and 26°) were established in theYanting Agro-ecological Experimental Station of Chinese Academy of Science in central Sichuan Basin. The plot was equipped with water storage tank to monitor water level change. Field monitoring from July 1 to October 31, 2012 observed 42 rainfall events which produced surface runoff from the experimental plots. These water level changes were converted to runoff. The representative eight rainfall events were selected for further analysis, the relationship between slope and runoff coefficient were determined using ANOVA, F-test, and z-score analysis. The results indicated a strong correlation between rainfall and runoff in cumulative amount basis. The mean value of the measured runoff coefficient for four experimental plots was around 0.1. However, no statistically significant relationship was found between slope and runoff coefficient. We reviewed the relationship between slope and runoff in many previous studiesand calculated z-score to compare with our experimental results. The results of z-score analysis indicated that both positive and negative effects of slope on runoff coefficient were obtained, however a moderate gradient(16°-20° in this study) could be a threshold of runoff generation for many different soils including the Chinese purple soil.  相似文献   

12.
Data collection, factor composition, nappe analysis and integrative simulation of natural geographical factors in Erlong Lake watershed have been carried out based on GIS. The risk areas where non-point source pollution may occur were compartmentalized and assessed, and the total soil erosion and the runoffs of N and P with rainfall in this valley were worked out by experiment and GIS mapping. The study indicated that the main type of soil erosion was moderate (erosion modulus is 1000–2500t/(km2·a)) at present, and the intense erosion areas are located in dry land with variable slope east of the lake and the middle-south parts of steep slope mountainous region (erosion modulus is more than 5000t/(km2·a)). Though the area is small, it should be paid attention to. The trend of non-point source pollution (NSP) of nitrogen and phosphorus loss was corresponded with the soil erosion. Spatial distribution and the reasons of the distribution difference have been presented and it was emphasized that the human activities among the influence factors was the most important. It surely offers a scientific basis to control and prevent non-point source pollution in the watershed. Foundation item: Under the auspices of the National Natural Science Foundation of China (No.50139020-5-2) and Science & Technology Committee of Jilin Province (No. 20010602) Biography: WANG Ning (1952–), female, a native of Beijing, associate professor, Ph.D., specialized in water and soil conservation and pollution control. E-mail: nwang@nenu.edu.cn  相似文献   

13.
A distributed hillslope model is presented for the computation of seasonal sediment loads flowing into the rain-fed irrigation reservoirs (tanks) from the mountainous catchments in Sri Lanka. The model is based on the subdivision of the catchment into hillslopes and application of a sediment transport capacity equation at hillslope scale and computation of sediment loads transported to the tanks. Coarse and fine sediment loads due to hourly excess rainfall during a season are separately estimated. The model depends on fewer parameters and can be easily calibrated for a tank. The model calibration only requires measurements of coarse and fine sediment loads transported into the tank due to several rainfalls of different intensities from a representative subcatchment of the tank. Coarse sediment loads are measured by using a sediment trap installed across an ephemeral stream draining the subcatchment. Fine sediment loads are obtained by measuring the discharge and accompanied sediment concentrations over the sediment trap. The model is calibrated, verified and applied for an irrigation tank in Sri Lanka to estimate the seasonal sedimentation loads.  相似文献   

14.
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.  相似文献   

15.
The Middle Mountains is one of the regions of Nepal most vulnerable to water erosion, where fragile geology, steep topography, anomalous climatic conditions, and intensive human activity have resulted in serious soil erosion and enhanced land degradation. Based on the 137Cs tracing method, spatial variations in soil erosion, organic carbon, and total nitrogen (TN) in terraced fields lacking field banks and forestland were determined. Soil samples were collected at approximately 5 m and 20 m intervals along terraced field series and forestland transects respectively. Mean 137Cs inventories of the four soil cores from the reference site was estimated at 574.33 ± 126.22 Bq m-2 (1 Bq (i.e., one Becquerel) is equal to 1 disintegration per second (1 dps)). For each terrace, the 137Cs inventory generally increased from upper to lower slope positions, accompanied by a decrease in the soil erosion rate. Along the entire terraced toposequence, 137Cs data showed that abrupt changes in soil erosion rates could occur between the lower part of the upper terrace and the upper part of the immediate terrace within a small distance. This result indicated that tillage erosion is also a dominant erosion type in the sloping farmland of this area. At the same time, we observed a fluctuant decrease in soil erosion rates for the whole terraced toposequence as well as a net deposition at the toe terrace. Although steep terraces (lacking banks and hedgerows) to some extent could act to limit soil sediment accumulation in catchments, soil erosion in the terraced field was determined to be serious. For forestland, with the exception of serious soil erosion that had taken place at the top of slopes due to concentrated flows from a country road situated above the forestland site, spatial variation in soil erosion was similar to the “standard” water erosion model. Soil organic carbon (SOC) and TN inventories showed similar spatial patterns to the 137Cs inventory for both toposequences investigated. However, due to the different dominant erosion processes between the two, we found similar patterns between the <0.002 mm soil particle size fraction (clay sized) and 137Cs inventories in terraced fields, while different patterns could be found between 137Cs inventories and the <0.002 mm soil particle size fraction in the forestland site. Such results confirm that 137Cs can successfully trace soil erosion, SOC and soil nitrogen dynamics in steep terraced fields and forestland in the Middle Mountains of Nepal.  相似文献   

16.
Application of simple and locally based erosion assessment methods that fit to the local condition is necessary to improve the performance and efficiency of soil conservation practices. In this study, rill erosion formation and development was investigated on the topo-sequence of three catchments(300-500 m slope length); and on agricultural fields(6 m and 14 m slope lengths) with different crop-tillage surfaces during erosive storms.Rill density and rill erosion rates were measured using rill cross section survey and close range digital photogrammetry. Rill formation and development was commonly observed on conditions where there is wider terrace spacing, concave slope shapes and unstable stone terraces on steep slopes. At field plot level, rill development was controlled by the distribution and abrupt change in the soil surface roughness and extent of slope length. At catchment scale, however, rill formation and development was controlled by landscape structures, and concavity and convexity of the slope. Greater rill cross sections and many small local rills were associated to the rougher soil surfaces. For instance, relative comparison of crop tillage practices have showed that faba-beantillage management was more susceptible to seasonal rill erosion followed by Teff and wheat tillage surfaces under no cover condition. Surface roughness and landscape structures played a net decreasing effect on the parallel rill network development. This implies that spatial and temporal variability of the rill prone areas was strongly associated with the nature and initial size of surface micro-topography or tillage roughness. Thus, it is necessary to account land management practices, detail micro-topographic surfaces and landscape structures for improved prediction of rill prone areas under complex topographic conditions. Application of both direct rill cross section survey and close range digital photogrammetric techniques could enhance field erosion assessment for practical soil conservation improvement.  相似文献   

17.
The Revised Universal Soil Loss Equation(RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system(GIS) and remote sensing(RS) technologies.To improve the accuracy of soil-erosion estimates,a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index(NDVI) datasets.The new C-factor was then applied in the RUSLE to integrate rainfall,soil,vegetation,and topography data of different periods,and thus monitor the distribution of soil erosion patterns and their dynamics during a 30-year period of the upstream watershed of Miyun Reservoir(UWMR),China.The results showed that the new C-factor estimation method,which considers land cover status and dynamics,and explicitly incorporates within-land cover variability,was more rational,quantitative,and reliable.An average annual soil loss in UWMR of 25.68,21.04,and 16.80 t ha-1a-1was estimated for 1990,2000 and 2010,respectively,corroborated by comparing spatial and temporal variation in sediment yield.Between 2000 and 2010,a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1a-1,while during 1990-2000 such lands only increased on average by 0.46%.Areas that classified as severe,very severe and extremely severe accounted for 5.68% of the total UWMR in 2010,and primarily occurred in dry areas or grasslands of sloping fields.The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners.Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land,afforestation,or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.  相似文献   

18.
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.  相似文献   

19.
The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR.  相似文献   

20.
Soil erosion by water under forest cover is a serious problem in southern China. A comparative study was carried out on the use of leaf area index (LAI) and vegetation fractional coverage (VFC) in quantifying soil loss under vegetation cover. Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates (40 mm h−1 and 54 mm h−1) using a portable rainfall simulator. Runoff rate, sediment concentration and soil loss rate were measured at relatively runoff stable state. Significant negative exponential relationship (p < 0.05, R2 = 0.83) and linear relationship (p < 0.05, R2 = 0.84) were obtained between LAI and sediment concentration, while no significant relationship existed between VFC and sediment concentration. The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration. LAI could better quantify such a role than VFC. However, neither LAI nor VFC could explain runoff rate or soil loss rate. Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号