首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Hydrologiska Byrans Vattenbalansavdeling(HBV) Light model was used to evaluate the performance of the model in response to climate change in the snowy and glaciated catchment area of Hunza River Basin. The study aimed to understand the temporal variation of streamflow of Hunza River and its contribution to Indus River System(IRS). HBV model performed fairly well both during calibration(R2=0.87, Reff=0.85, PBIAS=-0.36) and validation(R2=0.86, Reff=0.83, PBIAS=-13.58) periods on daily time scale in the Hunza River Basin. Model performed better on monthly time scale with slightly underestimated low flows period during bothcalibration(R2=0.94, Reff=0.88, PBIAS=0.47) and validation(R2=0.92, Reff=0.85, PBIAS=15.83) periods. Simulated streamflow analysis from 1995-2010 unveiled that the average percentage contribution of snow, rain and glacier melt to the streamflow of Hunza River is about 16.5%, 19.4% and 64% respectively. In addition, the HBV-Light model performance was also evaluated for prediction of future streamflow in the Hunza River using future projected data of three General Circulation Model(GCMs) i.e. BCC-CSM1.1, CanESM2, and MIROCESM under RCP2.6, 4.5 and 8.5 and predictions were made over three time periods, 2010-2039, 2040-2069 and 2070-2099, using 1980-2010 as the control period. Overall projected climate results reveal that temperature and precipitation are the most sensitiveparameters to the streamflow of Hunza River. MIROC-ESM predicted the highest increase in the future streamflow of the Hunza River due to increase in temperature and precipitation under RCP4.5 and 8.5 scenarios from 2010-2099 while predicted slight increase in the streamflow under RCP2.6 during the start and end of the 21 th century. However, BCCCSM1.1 predicted decrease in the streamflow under RCP8.5 due to decrease in temperature and precipitation from 2010-2099. However, Can ESM2 predicted 22%-88% increase in the streamflow under RCP4.5 from 2010-2099. The results of this study could be useful for decision making and effective future strategic plans for water management and their sustainability in the region.  相似文献   

2.
The objective of this study was to assess runoff discharge and sediment yield from Da River Basin in the Northwest of Vietnam using Soil and Water Assessment Tools(SWAT) model.The SWAT model was calibrated and validated using the observed monthly stream flows and sediment yield at selected gauging stations.The results indicated that SWAT generally performs well in simulating runoff and sediment yield according to Nash-Sutcliffe efficiency(NSE), Observation's standard deviation ratio(RSR), and percent bias(PBIAS) values.For runoff, the values of NSE, RSR, and PBIAS were 0.98,0.02, and 3.69 during calibration period and 0.99,0.01, and 1.56 during validation period, respectively.For sediment yield, the efficiency was lower than the value of NSE, RSR, and PBIAS during calibration period were 0.81, 0.19, and-4.14 and 0.84, 0.16, and-2.56 during validation period, respectively.The results of the study indicated that the vegetation status has a significant impact on runoff and sediment yield.Changes in land use type between 1995 and2005 from forest to field crop and urban strongly contributed to increasing the average annual runoff from 182.5 to 342.7 mm and sediment yield from101.3 to 148.1 ton-1 ha.Between 2005 and 2010, adecrease of both runoff(from 342.7 to 167.6 mm) and sediment yield(from 148.1 to 74.0 ton-1 ha) was due to the expansion of forested area and application of soil conservation practices.The results of this study are important for developing soil and water conservation programs, extending future SWAT modelling studies and disseminating these results to other regions in Vietnam.  相似文献   

3.
Within Karakoram Himalaya, Hunza River Basin(study area) is unique for a number of reasons: 1) potential impacts of highly concentrated highpitched mountains and glacial ice; 2) the glaciated portions have higher mean altitude as compared to other glaciated landscapes in the Karakoram; 3) this basin occupies varieties of both clean and debriscovered glaciers and/or ice. Therefore, it is imperative to understand the stability of topographic surface and potential implications of fluctuating glacial-ice causing variations in the movement of material from higher to lower elevations. This paper advocates landscape-level hypsometric investigations of glaciated landscape lies between 2280–7850 m elevation above sea level and non-glaciated landscape between 1461–7570 m. An attempt is made to understand intermediate elevations, which disguise the characteristics of glaciated hypsometries that are highly correlated with the Equilibrium Line Altitude(ELA). However, due to data scarcity for high altitude regions especially above 5000 m elevation, literature values for climatic conditions are used to create a relationship between hypsometry and variations in climate and ELA. The largest glaciated area(29.22%) between 5047 to 5555 m lies in the vertical regime of direct snow-accumulation zone and in the horizontal regime of net-accumulation zone(low velocity, net freezing, and no-sliding). In both landscapes, the hypsometric curves are ‘slow beginning' followed by ‘steep progress' and finally reaching a ‘plateau', reflecting the rapid altitudinal changes and the dominance of fluvial transport resulting in the denudation of land-dwelling and the transport of rock/debris from higher to lower altitudes. Reported slight differences in the average normalized bin altitudes against the cumulative normalized area between glaciated and non-glaciated landscapes are an indicator of slightly different land-forms and landform changes.  相似文献   

4.
Energy balance at the glacier surface is important for understanding the impacts of climate change on glaciers. Here, we analyzed the characteristics of the glacier surface energy fluxes along with their contributions to glacier melt on Bayi Ice Cap in Qilian Mountains by using a point-scale energy balance model. The half-hourly meteorological data from an automatic weather station (AWS) located on the glacier was used to drive the energy balance model. The model simulated results could accurately represent the mass-balance observations from the stake near the weather station during summer 2016. Our results showed the net radiation (86%) played an important role in the surface energy balance, and the contribution of the turbulent heat fluxes (14%) to the energy budget was relatively less important. A distinct behavior of energy balance, as compared to other continental glaciers in China (e.g., two adjacent glaciers Laohugou No. 12 Glacier and Qiyi Glacier), is the fact that a sustained period of positive turbulent latent flux exists on Bayi Ice Cap during August, causing faster melt rate in the month of August. Our study also presented the effect of frequent summer snowfall in slowing down surface melt by changing the surface albedo during the beginning of the melting season.  相似文献   

5.
The multi-model assessment of glaciohydrological regimes can enhance our understanding of glacier response to climate change. This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge. This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB) under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM) and a distributed Glacio-hydrological Degree-day Model(GDM). Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988-1992 and 1993-1997. Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor, temperature, and precipitation gradients. The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment. However, MPDDM estimated 68% of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon, while GDM estimated 14% rain and baseflow contribution. Likewise, MPDDM calculated 32%, and GDM generated 86% of the annual river runoff from snow and ice melt. MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation, respectively. Similarly, GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period. The snow and ice melt is significant in sustaining river flow in the SRB, and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability. Based on the sensitivity analysis, both models' outputs are highly sensitive to the variation in temperature. Furthermore, compared to MPDDM, GDM simulated considerable variation in the river discharge in climate scenarios, RCP4.5 and 8.5, mainly due to the higher sensitivity of GDM model outputs to temperature change. The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components, unlike one reservoir baseflow module used separately in MPDDM. The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.  相似文献   

6.
SWAT模型对高精度土壤信息的敏感性研究   总被引:2,自引:0,他引:2  
土壤信息是SWAT模型的重要输入数据,通常认为,土壤信息的精度直接影响着模拟结果的准确性。本文以美国Brewery Creek流域(19.5km2)为例,在其他输入不变的情况下,通过比较不同精度土壤数据(美国农业部SSURGO土壤图与SoLIM方法获得的土壤图)的模拟径流,分析SWAT模型对高精度土壤信息的敏感性。应用结果显示,在模型的校正前后,两种土壤数据的径流模拟结果均近似,差别并不显著。这表明在小流域水文模拟中,SWAT模型的径流模拟对高精度土壤信息的敏感性较弱,模拟径流不能很好的体现一定精度基础上土壤信息的差别。本文将此现象主要归因于:SWAT模型所采用的SCS-CN径流计算方法,在计算CN值(Curve Number)时将不同土壤类型综合到四个土壤水文组的做法,概括了土壤信息,模糊了土壤之间的属性差别,损失了土壤精度信息。本研究发现了SCS-CN径流计算方法在利用高精度土壤数据时存在的问题,并进行了分析,为水文模拟中参数的确定和数据的准备提供了参考。  相似文献   

7.
Interactions between surface water and groundwater are dynamic and complex in large endorheic river watersheds in Northwest China due to the influence of both irrigation practices and the local terrain. These interactions interchange numerous times throughout the middle reaches, making streamflow simulation a challenge in endorheic river watersheds. In this study, we modified the linear-reservoir groundwater module in SWAT (Soil and Water Assessment Tools, a widely used hydrological model) with a new nonlinear relationship to better represent groundwater processes; we then applied the original SWAT and modified SWAT to the Heihe River Watershed, the second largest endorheic river watershed in Northwest China, to simulate streamflow. After calibrating both the original SWAT model and the modified SWAT model, we analyzed model performance during two periods: an irrigation period and a non-irrigation period. Our results show that the modified SWAT model with the nonlinear groundwater module performed significantly better during both the irrigation and non-irrigation periods. Moreover, after comparing different runoff components simulated by the two models, the results show that, after the implementation of the new nonlinear groundwater module in SWAT, proportions of runoff components changed-and the groundwater flow had significantly increased, dominating the discharge season. Therefore, SWAT coupled with the non-linear groundwater module represents the complex hydrological process in the study area more realistically. Moreover, the results for various runoff components simulated by the modified SWAT models can be used to describe the hydrological characteristics of lowland areas. This indicates that the modified SWAT model is applicable to simulate complex hydrological process of arid endorheic rivers.  相似文献   

8.
降水数据的准确性和时空分辨率成为水文过程模拟的关键。卫星遥感降水资料的日益丰富为资料缺乏区的水文模拟带来了新的突破。本研究拟在资料缺乏、下垫面复杂,观测难、建模难的柴达木盆地高寒内陆河流域—巴音河中上游,基于近5年的TMPA 3B42、GPM IMERG V5及GPM IMERG V6逐日降水数据和气象站点观测数据建立SWAT模型,采用流域出口径流数据及不同的参数化方案分别率定4个模型,比较和探究不同数据在巴音河流域的适用性。结果表明:① 在月、年尺度上,实测降水数据及TMPA 3B42 V07对应的SWAT模型径流模拟效果较好,前者模拟精度较后者仅高6%~12%,且二者对于流域水量平衡的刻画均较准确。说明TMPA 3B42数据对应的径流模拟结果误差相对较小,可直接用于高寒内陆河流域水文模拟;② GPMIMERG V5数据对应的那什系数NSE值为0.13(月)、-1.58(年),误差百分数PBIAS值为41.2%(月、年),均方根误差与标准误差比率RSR值为0.93(月)、1.61(年),其径流模拟误差较大,模拟效果不可信,说明GPMIMERG V5数据集并不适用于巴音河流域水文模拟;③ GPMIMERG V6-F对应的月径流模拟结果明显优于GPMIMERG V5-F,前者模拟精度较后者提高4倍,但其模拟的年径流对应的NSE值为-0.12,RSR值为1.09。该研究可为资料缺乏的高寒内陆河流域生态水文过程模拟提供参考。  相似文献   

9.
The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Province,China have been evaluated quantitatively by using a general circulation model(HadCM3)coupled with the Soil and Water Assessment Tool(SWAT)hydrological model.The model was calibrated and validated against the historical monitored data from 2005 to 2009.The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series,derived for three 30-year time slices,2020s,2050s and 2080s.Results suggest that daily mean temperature increases with a changing rate of 0.435℃per decade,and precipitation decreases with a changing rate of 0.761 mm per decade.Compared with other seasons,the precipitation in summer shows significant downward trend,while a significant upward trend in autumn.The annual streamflow demonstrates a general downward trend with a decreasing rate of 0.405 m3/s per decade.The streamflow shows significant downward and upward trends in summer and in autumn,respectively.The decreasing rate of streamflow in summer reaches 1.97 m 3 /s per decade,which contributes primarily to the decrease of streamflow.The results of this work would be of great benifit to the design of economic and social development planning in the study area.  相似文献   

10.
In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired.  相似文献   

11.
By using a degree-day based distributed hydrological model, regimes of glacial runoff from the Koxkar glacier during 2007-2011 are simulated, and variations and characteristics of major hydrological components are discussed. The results show that the meltwater runoff contributes 67.4%, of the proglacial discharge, out of which snowmelt, clean ice melting, buried-ice ablation and ice-cliff backwasting account for 22.4%, 21.9%, 17.9% and 5.3% of the total melt runoff, respectively. Rainfall runoff is significant in mid-latitude glacierized mountain areas like Tianshan and Karakorum. In the Koxkar glacier catchment, about 11.5% of stream water is initiated from liquid precipitation. Spatial distributions for each glacial runoff component reveal the importance of climatic gradients, local topography and morphology on glacial runoff generation, and temporal variations of these components is closely related to the annual cycle of catchment meteorology and glacier storage. Four stages are recognized in the seasonal variations of glacier storage, reflecting changes in meltwater yields, meteorological conditions and drainage systems in the annual hydrological cycle.  相似文献   

12.
The study investigated the streamflow response to the shrinking cryosphere under changing climate in the Lidder valley, Upper Indus Basin(UIB), Kashmir Himalayas. We used a combination of multitemporal satellite data and topographic maps to evaluate the changes in area, length and volume of the glaciers from 1962 to 2013. A total of 37 glaciers from the Lidder valley, with an area of 39.76 km~2 in 1962 were selected for research in this study. It was observed that the glaciers in the valley have lost ~28.89 ±0.1% of the area and ~19.65 ±0.069% of the volume during the last 51 years, with variable interdecadal recession rates. Geomorphic and climatic influences on the shrinking glacier resources were studied. 30-years temperature records(1980-2010) in the study area showed a significant increasing trend in all the seasons. However, the total annual precipitation during the same period showed a nonsignificant decreasing trend except during the late summer months(July, August and September), when the increasing trend is significant. The depletion of glaciers has led to the significant depletion of the streamflows under the changing climate in the valley. Summer streamflows(1971-2012) have increased significantly till mid-nineties but decreased significantly thereafter, suggesting that the tipping point of streamflow peak, due to the enhanced glacier-melt contribution under increasing global temperatures, may have been already reached in the basin. The observed glacier recession and climate change patterns, if continued in future, would further deplete the streamflows with serious implications on water supplies for different uses in the region.  相似文献   

13.
Accurate measurements of glacier elevation changes play a crucial role in various glaciological studies related to glacier dynamics and mass balance. In this paper, glacier elevation changes of Urumqi Glacier No.1 between August 2015 and August 2017 were investigated using Sentinel-1 A data and DInSAR technology. Meanwhile, the atmospheric delay error was corrected with the MODIS MOD05_L2 products. The weight selection iteration method was applied to calibrate the glacier elevation changes in the mass balance years 2015-2016 and 2016-2017. Finally, the geodetic method was employed to calculate the elevation change values of individual stakes of Urumqi Glacier No.1. Moreover, the elevation change values corrected by the weight selection iteration method were verified. Results showed as follows:(1) the elevation of Urumqi Glacier No.1 glacier affected by atmospheric delay was 1.270 cm from 2015 to 2016. The glacier elevation affected by atmospheric delay from 2016 to 2017 was 1.071 cm.(2) The elevation change value of Urumqi Glacier No.1 was-1.101 m from 2015 to 2016, and the elevation of Urumqi Glacier No.1 decreased by 1.299 m from 2016 to 2017. The overall thickness of Urumqi Glacier No. 1 was thinning.(3) By comparing the elevation change results of individual stakes with corresponding points corrected by the weight selection iteration method, the mean squared errors of difference were 0.343 m and 0.280 m between the two mass balance years, respectively.(4) The accuracy of elevation change in non-glaciated areas was 0.039 m from 2015 to 2016 and 0.034 m from 2016 to 2017. Therefore, it is reliable to use Sentinel-1 A data and the study method proposed in this paper to calculate the elevation change of mountain glaciers with very low horizontal movement.  相似文献   

14.
Present study shows suspended sediment dynamics in the meltwater of Chhota Shigri glacier, Himachal Pradesh, India for different melt seasons during the period 2011-2014. Maximum suspended sediment concentration in the meltwater was found during the month of July 2011, 2012 and 2014 constituting to 55.2%, 48.3% and 46.9%, respectively. Whereas in 2013, maximum suspended sediment concentration was observed in August accounting for 46.1% of the total. On the other hand, maximum suspended sediment load was monitored in the month of July 2011, 2012 and 2014 constituting 59.5%, 63% and 55.7% of the total, respectively. Whereas in 2013, maximum suspended sediment load was observed in the month of August accounting for 49.8% of the total suspended sediment load. Annual distribution of suspended sediment concentration (SSC) and suspended sediment load (SSL) in the Chhota Shigri glacier shows higher value of SSC and SSL during the study period 2012 and 2013, which may be due to the presence of high glacial runoff and negative mass balance of the studied area during these time periods. Marked diurnal variation has been observed in the SSC of meltwater. Strong correlation was observed between SSC and SSL with discharge. On the other hand, SSC and SSL also showed strong exponential correlation with air temperature of the studied area. Sediment yield from the catchment of Chhota Shigri glacier is high during the peak melt season (July and August) and low during the late melt season (September and October). The average value of erosion rate for Chhota Shigri glacier basin during the study period 2011-2014 was calculated to be 1.1 mm/yr, which is lower than the average erosion rate of other Himalayan glaciers such as Rakiot, Chorabari and Gangotri glaciers, which may be caused by its geological setting containing high erosion resistant rocks such as granite, granite gneiss and porphyritic granite.  相似文献   

15.
Use of a non-zero hydrologic response unit(HRU) threshold is an effective way of reducing unmanageable HRU numbers and simplifying computational cost in the Soil and Water Assessment Tool(SWAT) hydrologic modelling. However, being less representative of watershed heterogeneity and increasing the level of model output uncertainty are inevitable when minor HRU combinations are disproportionately eliminated. This study examined 20 scenarios by running the model with various HRU threshold settings to understand the mechanism of HRU threshold effects on watershed representation as well as streamflow predictions and identify the appropriate HRU thresholds. Findings show that HRU numbers decrease sharply with increasing HRU thresholds. Among different HRU threshold scenarios, the composition of land-use, soil, and slope all contribute to notable variations which are directly related to the model input parameters and consequently affect the streamflow predictions. Results indicate that saturated hydraulic conductivity, average slope of the HRU, and curve number are the three key factors affecting stream discharge when changing the HRU thresholds. It is also found that HRU thresholds have little effect on monthly model performance, while evaluation statistics for daily discharges are more sensitive than monthly results. For daily streamflow predictions, thresholds of 5%/5%/5%(land-use/soil/slope) are the optimum HRU threshold level for the watershed to allow full consideration of model accuracy and efficiency in the present work. Besides, the results provide strategies for selecting appropriate HRU thresholds based on the modelling goal.  相似文献   

16.
This paper presents a dynamic glacier model that simulates the processes in response of Glacier No. 1 in headwaters of the ürümqi River to various future climatic scenarios. The results indicate that the Glacier No. 1 will continue retreating if current climatic conditions prevail, until it reaches an equilibrium state of 1600 m in length after 700 to 800 years. If air temperature raise 1°C, the glacier would become a hanging glacier with a length of 300 m after 700 to 800 years. Due to its retreat, cooling function of the glacier would be weakened, resulting in the air temperature in glaciated area higher than that in ice-free areas. The results also indicate that the current glacier melt runoff is in higher value period in comparison with the runoff in the equilibrium state under the current climatic condition. If the air temperature continues increasing, however, the runoff would still increase to a new peak and then decrease rapidly. The project supported by the National Natural Science Foundation of China.  相似文献   

17.
人口增长、气候变化、制度变迁、城市化等均会导致土地利用/覆被的变化,进而引起流域水文过程(截留、入渗、蒸散发和地下水补给等)和水循环过程的改变。当前,由于逐年土地利用/覆被数据获取困难、水文模型本身计算缺陷等问题,所有在流域尺度上开展的借助水文模型进行的土地利用/覆被变化影响下的水文模拟研究都存在一个共同缺点,就是采用的水文模型并不能逐年调用土地利用/覆被数据,即水文模型无法真实体现或模拟土地利用/覆被的时空变化。SWAT作为一个广泛应用的分布式水文模型,在其模拟期内,不能逐年调用土地利用/覆被数据,即在进行水文模拟时忽略了土地利用/覆被时间上的变化,这可能会影响其在土地利用/覆被变化剧烈地区(如黑河中游)的应用。黑河流域是典型的内陆河流域,也是中国西北地区第二大内陆河流域。黑河中游是黑河流域的径流耗散区。本文针对SWAT模型在考虑土地利用/覆被变化时的缺点,对其进行了改进并开发出能够逐年调用土地利用/覆被数据的LU-SWAT模型。在土地利用/覆被变化剧烈的黑河中游对SWAT和LU-SWAT模型的径流模拟效果进行比较,发现LU-SWAT模型更适用于黑河中游水循环模拟。  相似文献   

18.
In the Khumbu-and Khumbakarna Himalaya an ice stream network and valley glacier system has been reconstructed for the last glacial period (Würmian, Last Ice Age, Isotope stage 4–2, 60–18 Ka BP, Stage 0) with glaciogeomorphological and sedimentological methods. It was a part of the glacier system of the Himalaya and has communicated across transfluence passes with the neighbouring ice stream networks toward the W and E. The ice stream network has also received inflow from the N, from a Tibetan ice stream network, by the Kyetrak-Nangpa-Bote Koshi Drangka (Valley) in the W, by the W-Rongbuk glacier valley into the Ngozumpa Drangka (Valley), by the Central Rongbuk glacier valley into the Khumbu Drangka (Valley) and by the antecedent Arun Nadi transverse-valley in the E of the investigation area. The ice thickness of the valley glacier sections, the surface of which was situated above the snow-line, amounted to 1000–1450 m. The most extended parent valley glaciers have been measured approx. 70 km in length (Dudh Koshi glacier), 67 km (Barun-Arun glacier) and 80 km (Arun glacier). The tongue end of the Arun glacier has flowed down to c. 500 m and that of the Dudh Koshi glacier to c. 900 m asl. At heights of the catchment areas of 8481 (or 8475) m (Makalu), i.e., 8848 (or 8872) m (Mt. Everest, Sagarmatha, Chogolungma) this is a vertical distance of the Ice Age glaciation of c. 8000 m. The steep faces towering up to 2000 m above the névé areas of the 6000–7000 m-high surfaces of the ice stream network were located 2000–5000 m above the ELA. Accordingly, their temperatures were so low, that their rock surfaces were free of flank ice and ice balconies. From the maximum past glacier extension up to the current glacier margins, 13 (altogether 14) glacier stages have been differentiated and in part 14C-dated. They were four glacier stages of the late glacial period, three of the neoglacial period and six of the historical period. By means of 130 medium-sized valley glaciers the corresponding ELA-depressions have been calculated in comparison with the current courses of the orographic snow-line. The number of the glacier stages since the maximum glaciation approx. agrees with that e.g. in the Alps and the Rocky Mountains since the last glacial period. Accordingly, it is interpreted as an indication of the Würmian age (last glacial period) of the lowest ice margin positions. The current climatic, average glacier snow-line in the research area runs about 5500 m asl. The snow-line depression (ELA) of the last glacial period (Würm) calculated by four methods has run about 3870 m asl, so that an ELA-depression of c. 1630 m has been determined. This corresponds to a lowering of the annual temperature by c. 8, i.e., 10°C according to the specific humid conditions at that time.  相似文献   

19.
From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mt. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due to its large area with glacier lakes at the tongue of the Rongbuk Glacier, a large amount of stream flow was found at night, which indicates the strong storage characteristic of the Rongbuk Glacier catchment. There was a time lag ranging from 8 to 14 hours between daily discharge peaks and maximum melting (maximum temperature). As melting went on the time lag got shorter. A high correlation was found between the hydrological process and daily temperature during the ablation period. The runoff from April to October was about 80% of the total in the observation period. Compared with the discharge data in 1959, the runoff in 2005 was much more, and the runoff in June, July and August increased by 69%, 35% and 14%, respectively. The rising of temperature is a major factor causing the increase in runoff. The discharges from precipitation and snow and ice melting are separated. The discharge induced by precipitation accounts for about 20% of the total runoff, while snow and ice melting for about 80%.  相似文献   

20.
Understanding streamflow changes in terms of trends and periodicities and relevant causes is the first step into scientific management of water resources in a changing environment. In this study, monthly streamflow variations were analyzed using Modified Mann-Kendall(MM-K) trend test and Continuous Wavelet Transform(CWT) methods at 9 hydrological stations in the Huaihe River Basin. It was found that: 1) streamflow mainly occurs during May to September, accounting for 70.4% of the annual total streamflowamount with Cv values between 0.16–0.85 and extremum ratio values between 1.70–23.90; 2) decreased streamflow can be observed in the Huaihe River Basin and significant decreased streamflow can be detected during April and May, which should be the results of precipitation change and increased irrigation demand; 3) significant periods of 2–4 yr were detected during the 1960 s, the 1980 s and the 2000 s. Different periods were found at stations concentrated within certain regions implying periods of streamflow were caused by different influencing factors for specific regions; 4) Pacific Decadal Oscillation(PDO) has the most significant impacts on monthly streamflow mainly during June. Besides, Southern Oscillation Index(SOI), North Atlantic Oscillation(NAO) and the Ni?o3.4 Sea Surface Temperature(Ni?o3.4) have impacts on monthly streamflow with three months lags, and was less significant in time lag of six months. Identification of critical climatic factors having impacts on streamflow changes can help to predict monthly streamflow changes using climatic factors as explanatory variables. These findings were well corroborated by results concerning impacts of El Nino-Southern Oscillation(ENSO) regimes on precipitation events across the Huaihe River Basin. The results of this study can provide theoretical background for basin-scale management of water resources and agricultural irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号