首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Distribution of Dissolved Aluminum in the Yellow and East China Seas   总被引:2,自引:0,他引:2  
Water samples containing dissolved aluminum were collected from the Yellow and East China Seas in October-November 2000. The average concentrations of dissolved AI in the Yellow Sea (YS) and East China Sea (ECS) were 0.042 and 0.056 μ molL^-1, respectively. The concentration of dissolved aluminum decreased gradually across the continental shelf. The lower concentrations appeared in the YS cold water center and in the bottom layer at the shelf edge of the ECS, where they were 0.016 and 0.011 μmolL^-1, respectively. The distribution of dissolved Al was controlled by physical mixing processes rather than biological uptake processes. The impact of different water masses along the PN transect was calculated based on the mass balance model. The results show that the impact of the Changjiang River was mainly concentrated on the coastal area and the top thermocline water on the ECS shelf, where the impact percentage decreased from 12.6% to 1.1% in the surface water, while the contribution of the Kuroshio water was dominant on the ECS shelf in this survey, increasing from 77.6% to 97,8% along the PN transect from the Changjiang River Estuary to the Ryukyu Islands. It is concluded that aluminum can serve as a proper tracer for studying the impact of Changjiang terrestrial matter on the ECS shelf water.  相似文献   

2.
The circulations off the Changjiang mouth in May and November were simulatedby a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjlang discharge is much larger in May than in November, and the wind is westward in May, and southward in November offthe Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoff near the mouth and the TWC off the mouth, and the runoff and TWC are greater in May than in November.  相似文献   

3.
Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.  相似文献   

4.
Study of the distribution and migration of the common squid,Todarodes pacificus Steenstrup,basedon the index of important fishing ground(P) and fisheries statistics on the Yellow Sea and northern EastChina Sea during 1980—1991 showed that:1.Its catch in the fishing period(June to November) is 91.77% of the annual yield.The fishingground distributes over the northem and middle Yel1ow Sea and adjacent area of the Changjiang Estuary.2. It over-winters in the northem East China Sea and waters adjacent to Goto Island from De-cember to February and spawns in waters near Haijiao Is1and and west of Kyushu. The main stock mi-grates along 123°30′E to the ChangJiang Estuary, Haizhou Bay. offsea from Shidao to Qingdao,mideastern Yellow Sea, and offsea Weihai and Haiyang Island succesively for feeding after April. The sur-plus stock migrates again to the wintering ground in December.3.The favorable feeding temperature is 6-23℃(optimum of l3-20℃ in the Changjiang Estua-ry and 7-13℃ in the northern and middle Yel  相似文献   

5.
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises. There was something special in the observations for the Yellow Sea Warm Current (YSWC), the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year. The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind. It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter. Resulting from the reduced Changjiang River discharge, the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons. The other water masses seemed normal without noticeable anomalies in 2011. The Yellow Sea Coastal Current (YSCC) water, driven by the northerly wind, flowed southeastward as a whole except for its northeastward surface layer in summer. The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement. The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.  相似文献   

6.
Dissolved nutrient concentration in the Huanghe(Yellow) River at Lijin was monitored during a water-sediment regulation period and a subsequent rainstorm from 14 June to 19 July, 2005. This study provides detailed information on nutrient concentrations in the Huanghe River during the water-sediment regulation and rainstorm periods, and is of signifi cance for the downstream area of the Huanghe River and the Bohai Sea. The average concentrations of nitrate, nitrite and ammonia were 304.7 μmol/L, 0.19 μmol/L, and 1.10 μmol/L, respectively, while the average concentrations of dissolved inorganic phosphorus(DIP) and dissolved silicate(DSi) were 0.23 μmol/L and 122.9 μmol/L, respectively. Nutrient concentrations during the water-sediment regulation period were mainly infl uenced by the dilution effect, fl oodplain effect and sediment resuspension while dilution and erosion effects were the main factors during the rainstorm. The fl uxes of dissolved inorganic nitrogen(DIN), DIP and DSi during the water-sediment regulation and rainstorm periods accounted for 20.4%, 19.5%, 16.7% and 4.97%, 6.45%, 5.47% of the annual nutrient fl uxes, respectively. Discharge was the main factor infl uencing the fl uxes of nutrients during both the watersediment regulation and the rainstorm periods.  相似文献   

7.
Distribution of suspended matter in seawater in the Southern Yellow Sea is investigated in five regions: 1) the Northern Jiangsu bank, the highest TSM (total suspended matter) content region; 2) the high TSM content region off the Changjiang River mouth; 3) the high TSM content region off the Chengshan Cape; 4) the low TSM region off Haizhou Bay; 5) the central part of the Southern Yellow Sea, a low TSM content region. The vertical distribution of TSM is mainly characterized by a spring layer of suspended matter, written as “suspended-cline” whose genesis is related to storms in winter. In this paper, non-combustible components and grain sizes in suspended matter, relationship between suspended matter and bottom sediments, and salinity in seawater are described. Investigation result shows that, in this area, suspended matter comes mainly from resuspended bottom sediment and secondarily from present discharge loads from rivers and biogenic materials. Discharged sediments from the Huanghe River move around the Chengshan Cape and affect the northwestern region of this area. Sediments from the Changjiang River affect only the southern part and have little or no direct influence on the central deep region. Wave is the main factor affecting distribution of suspended matter. Water depth controls the critical depth acted on by waves. The cold water mass in the central region limits horizontal and vertical dispersions of terrigenous materials. Suspended matter here has the transitional properties of the epicontinental sea. Its concentration and composition are different from those of a semi-closed sea (such as the Bohai Sea) and those of the East China Sea outer continental shelf or those near oceanic areas.  相似文献   

8.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Niño events. The temporal mode of VEOF-2 is in good agreement with the curve of the Niño 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Niño event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Niño occurs in winter. If El Niño happens in summer, the reverse is true.  相似文献   

9.
INTRODUCTIONTraditionally,thecontinentalshelfcirculationisjudgedonthebasisofthewatersalinityandtemperaturedistribution,massanalysisandobservedcurrentvelocitybykinemometer.Limitedobservationaldatamakesitdifficulttodemonstratethecirculationmechanism.With…  相似文献   

10.
The annual bloom of the green macroalgal Ulva prolifera from May through July since 2008 and another of giant jellyfish Nemopilema nomurai from June through September have been frequent events in the Yellow Sea. However, the patterns of benthic ciliate communities during and after the blooms are still not known. In combination with analyses of benthic environmental factors, we investigated the distribution and community composition of benthic ciliates in the Yellow Sea in July and November 2011. In July, ciliates had high standing crops and diversity in the northern Yellow Sea, and in the inshore area off the southern Shandong Peninsula, where large numbers of green macroalgae accumulated. In November, the abundance, biomass and diversity of ciliates were high in the sea areas off the Shandong Peninsula and Changjiang estuary, where a large quantity of jellyfish occurred in August. Neither the abundance nor the biomass had significant difference between seasons, or between different compartments of the Yellow Sea. The species number, and both Margalef and Shannon-Wiener indices of ciliates were all significantly higher in November than in July. In both seasons, prostomateans and karyorelicteans consistently constituted the first and second most important ciliate groups in biomass; and carnivorous ciliates constituted the primary feeding type in terms of biomass as well as species richness, followed by bacterivores, algivores and omnivores. Compared with that in June 2007 when no macroalgae occurred, the percentage of small-sized bacterivores (e.g. Metacystis spp., Euplotes spp. and scuticociliates) increased in July 2011. The proportion of carnivorous ciliates increased in November, and this increased dominance of carnivorous ciliates may be a response to the increase in predominance of heterotrophic nanoflagellates, which might in turn be ascribed to an effect of green macroalgal and giant jellyfish blooms in the Yellow Sea.  相似文献   

11.
Song  Minjie  Yan  Tian  Kong  Fanzhou  Wang  Yunfeng  Zhou  Mingjiang 《中国海洋湖沼学报》2022,40(6):2107-2119
Journal of Oceanology and Limnology - Harmful algal blooms (HABs) in the Southern Yellow Sea (SYS) have shown a trend of increasing diversity and detrimental effects. While the Bohai Sea, East...  相似文献   

12.
The occurrence of the giant jellyfish, Nemopilema nomurai, has been a frequent phenomenon in the Yellow Sea. However, the relationship between the giant jellyfish and protozoa, in particular ciliates, remains largely unknown. We investigated the distribution of nanoflagellates, ciliates, Noctiluca scintillans, and copepod nauplii along the transect 33~N in the Yellow Sea in June and August, 2012, during an occurrence of the giant jellyfish, and in October of that year when the jellyfish was absent. The organisms studied were mainly concentrated in the surface waters in summer, while in autumn they were evenly distributed in the water column. Nanoflagellate, ciliate, and copepod nauplii biomasses increased from early June to August along with jellyfish growth, the first two decreased in October, while N. scintillans biomass peaked in early June to 3 571 pg C/L and decreased in August and October. In summer, ciliate biomass greatly exceeded that of copepod nauplii (4.61-15.04 ~tg C/L vs. 0.34-0.89 pg C/L). Ciliate production was even more important than biomass, ranging from 6.59 to 34.19 ~tg C/(L.d) in summer. Our data suggest a tight and positive association among the nano-, micro-, and meso-zooplankton in the study area. Statistical analysis revealed that the abundance and total production of ciliate as well as loricate ciliate biomass were positively correlated with giant jellyfish biomass, indicating a possible predator-prey relationship between ciliates and giant jellyfish. This is in contrast to a previous study, which reported a significant reduction in ciliate standing crops due to the mass occurrence ofN. nomurai in summer. Our study indicates that, with its high biomass and, in particular, high production ciliates might support the mass occurrence of giant jellyfish.  相似文献   

13.
14.
Light transmission data collected from June to July 1987 and from February to March 1997 by the R/V Kexue 1 in the East China Sea were used to analyze its distribution characteristics and its relation to the sediment transport in this sea. Some results obtained were: (1) The Taiwan Warm Current flowing northwards seemed to be a barrier preventing suspended matter discharged from the Changjiang River Estuary from continuously moving southeastward and causing the suspended matter to flow along a path near 123°30′E in summer and 123°00′E in winter. (2) Suspended matter in the area adjacent to the Changjiang River Estuary could not be transported southward along the coast in summer due to opposing offshore currents including the Taiwan Warm Current flowing northward and the Changjiang Diluted Water turning northeastward. (3) The thermocline and temperature front bar suspended matter from crossing through.  相似文献   

15.
The ampharetid genus Lysippe Malmgren, 1866 is reported for the first time from Chinese waters. The identification was based on material deposited in the Marine Biological Museum of the Chinese Academy of Sciences (Qingdao). A new species, Lysippe trichobranchia sp. nov. is described. The new species is widely distributed in shallow waters of the Bohai Gulf, the Yellow Sea and the East China Sea at depths of 10-40 m.  相似文献   

16.
Over-summering is a crucial period for Calanus sinicus in the southern Yellow Sea,where it is a key member of the zooplankton community.Lipids play an important role in copepod diapause,which is part of their over-summering strategy.We investigated how different fatty acids and lipid classes,including wax esters,changed during over-summering of C.sinicus during three cruises in June and August 2011 and November 2010,corresponding to the pre-,during and post-diapause periods,respectively.Large amounts of lipids were accumulated,mainly wax esters as previously found in C.finmarchicus during its diapause,and most of the storage lipids were used during over-summering.Wax ester polyunsaturated fatty acids(PUFAs) showed the most variation of the fatty acids(FAs),while the percentage composition of FAs in polar lipids was relatively stable.Selective use of wax ester PUFAs has already been shown to play important roles in the winter diapause of Calanus species in other regions,and our FA results show that this is the case for the Yellow Sea Cold Bottom Water(YSCBW) population that diapauses in summer.  相似文献   

17.
Water samples were collected in 120 stations in the Bohai Sea of China to analyze the distribution of dissolved nutrients and assess the degree of eutrophication in August 2002. The result shows that the average concentration of DIN increased and the PO4-P concentration sharply decreased compared to the previous data of corresponding period. The high concentrations of DIN and PO4-P occurred in coastal waters, especially in the bays and some river estuaries, while the high concentrations of SiO3-Si in the surface and middle depth occurred in the central area of the Bohai Sea. The average ratio of DIN/ PO4-P was much higher than the Redfield Ratio (16:1). Apparently, PO4-P was one of the limiting nutrient for phytoplankton growing in the sea. The average concentrations of DON and DOP were higher than their inorganic forms. The results of eutrophication assessment show that 22.1% of all stations were classified as violating the concentration levels of the National Seawater Quality Standard (GB 3097-1997) for DIN and only 3.9% for PO4-P. The average eutrophication index in the overall area was 0.21±0.22 and the high values occurred in Bohai Bay, Liaodong Bay and near the Yellow River estuary. This means that the state of eutrophication was generally mesotrophic in the Bohai Sea, but relatively worse in the bays, especially some river estuaries.  相似文献   

18.
Community structure changes of macrobenthos in the South Yellow Sea   总被引:3,自引:0,他引:3  
The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure. The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied. Five communities were recognized by cluster analysis: 1. The Yellow Sea Cold Water Mass community dominated by cold water species, which changed slightly in species composition since the 1950s; 2. The mixed community with the coexistence of cold water species and warm water species, as had been reported previously; 3. The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4. The Changjiang (Yangtze) River Estuarine community, with some typical estuarine species; 5. The community affected by the Yellow Sea Warm Current. The greatest change occurred in the coastal area, which indicated that the change may be caused by human activities. Macrobenthos in the central region remained almost unchanged, particularly the cold water species shielded by the Yellow Sea Cold Water Mass. The depth, temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.  相似文献   

19.
This study investigates the wind energy input, an important source of mechanical energy, in the coastal seas east of China. Using the wind field from the high-resolution sea surface meteorology dataset in the Bohai Sea, Yellow Sea, and East China Sea, we studied the wind energy input through surface ageostrophic currents and surface waves. Using a simple analytical formula for the Ekman Spiral with timedependent wind, the wind energy input through ageostrophic currents was estimated at ~22 GW averaged from 1960 to 2007, and through use of an empirical formula, the wind energy input through surface waves was estimated at ~169 GW. We also examined the seasonal variation and long-term tendency of mechanical energy from wind stress, and found that the wind energy input to the East China Sea decreased before the 1980s, and then subsequently increased, which is contrary to what has been found for the Bohai Sea and Yellow Sea. More complicated physical processes and varying diffusivity need to be taken into account in future studies.  相似文献   

20.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号