首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current data from a moored Acoustic Doppler Current Profiler(ADCP) deployed at 69?30.155′N,169?00.654′W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper.Characteristics of tidal and residual currents are ob-tained with Cosine-Lanczos filter and cross-spectral analyses.The main achievements are as follows:1) Along with the local inertial frequency of 12.8 h,two other peaks at ~12-h and ~10-d dominate the time series of raw velocity;2) The M_2 dominates the 6 resolved tide constituents with significant amplitude variations over depth and the ratios of current speed of this constituent to that of the total tidal current are 54% and 47% for u and v components,respectively.All the resolved tidal constituents rotate clockwise at depth with the exception of MM and O1.The constituents of M_2 and S_2 with the largest major semi-axes are similar in eccentricity and orientation at deeper levels;3) The maximum of residual currents varies in a range of 20–30 cms~(-1) over depth and the current with lower velocities flow more true north with smaller magnitudes compared to the current in surface layer.The ~10 d fluctuation of residual current is found throughout the water column and attributed to the response of current to the local wind forcing,with an approximate 1.4 d lag-time at the surface level and occurring several hours later in the lower layer;4) Mean residual currents flow toward the north with the magnitudes smaller than 7 cms~(-1) in a general agreement with previous studies,which suggests a relatively weaker but stable northward flow indeed exists in the central Chukchi Sea.  相似文献   

2.
The abyssal circulation in the Philippine Sea(PS)is investigated,with outputs from the Simple Ocean Data Assimilation version 2.2.4(SODA224).The deep-water currents in SODA224 are carefully evaluated,with sparse in situ observations in the North Pacific Ocean.In the upper deep layer(20003000 m)of the PS,a strong westward current,which originates from the Northeast Pacific Basin and enters the PS through the Yap-Mariana Junction,exists along 1114 N.This strong westward current bifurcates into two western boundary currents off the Philippines.The northward-flowing current flows out of the PS around 2021 N,whereas the southward-flowing current transports deep water from the northern hemisphere to the southern hemisphere.In the lower deep layer(30004500 m),the inflow water first flows northward to the east of the Western Mariana Basin and then turns westward at approximately 18 N.The inflow water mainly enters the Philippine Basin(PB),with a small part turning southward to constitute a weak cyclonic circulation.The water entering the PB mainly merges into a strong southward western boundary current in the south-ern PB.In the bottom layer(below 4500 m),both the northeast and northwest PB show single cyclonic gyres,whereas the south PB shows a single anticyclonic gyre.Moreover,comparisons with the observations indicate the possible existence of a cyclonic sense of circulation over the Philippine Trench.The current study provides the implications for future observations,which are needed to fur-ther investigate the temporospatial variations of the abyssal circulation in the PS on multiple scales.  相似文献   

3.
Based on a ship survey during January 1998, the characteristics of the flow, the thermohaline properties and the volume transport of the Arabian Sea are discussed. A strong westward flow exists between 10.5?N and 11?N, part of which turns to the south as the Somali current near the coast at about 10?N and the rest turns north. At the passage between the African continent and the So- cotra Island, the northern branch separates into two flows: the left one enters the passage and the right one flows eastward along the southern slope of the island. Off the island the flow separates once more, most of it meandering northeast and a small fraction flow- ing southeast. Volume transport calculation suggests that the tidal transport is one or two orders of magnitude smaller than the total transport in this region and it becomes more important near the coast. The average velocity of the flow in the upper layer (0-150 m) is about 20 cm s-1, with a maximum of 53 cm s-1 appearing east of the Socotra Island, and the subsurface layer (200-800 m) has an aver- age velocity of 8.6 cm s-1; the velocity becomes smaller at greater depths. The depth of the seasonal thermocline is about 100 m, above which there is a layer with well mixed temperature and dissolved oxygen. High-salinity and oxygen-rich water appears near the surface of the northern Arabian Sea; a salinity maximum and oxygen minimum at 100 m depth along 8?N testifies the subduction of surface water from the northern Arabian Sea. Waters from the Red Sea and the Persian Gulf also influence the salinity of the area.  相似文献   

4.
1 .INTRODUCTIONThewesternequatorialPacific ,particularlythesouthernmostPhilippineSea ,wascalled“watermasscrossroads”byFineetal.(1 994 )duetotheconfluencethereofseveralwatermassesfromhigherlatitudesofbothhemispheres (Wyrtki,1 96 1 ;Fineetal.,1 994 ) .Fineetal.(1 994 )de picted (Fig .1 )majorcurrentsintheIndonesianregion .AfterencounteringthewesternboundaryalongthePhilippinecoast,theNorthEquatorialCur rent (NEC)bifurcatesintothenorthwardflowingKuroshioandthesouthwardflowingMindanao…  相似文献   

5.
The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.  相似文献   

6.
Results of numerical simulation of currents in the western North Tropical Pacific Ocean by using a barotropic primitive equation model with fine horizontal resolution agreed well with observations and showed that the Mindanao Cyclonic Eddy located north of the equator and east of Mindanao Island exists during most of the year with monthly (and large seasonal) variations in scope . strength and central location . In June , an anticyclonic eddy occurs northeast of Halmahera Island, strengthens to maximum in August , exists until October and then disappears . The observed large-scale circulation systems such as the North Equatorial Current . the Mindanao Current and the North Equatorial Countercurrent are all very well reproduced in the simulations.  相似文献   

7.
A synoptic-scale upwelling event that developed off the east coast of the Hainan Island(EHIU) in the summer of 2010 is defi ned well via processing the Moderate Resolution Imaging Spectroradiometer(MODIS) sea surface temperature(SST) data. The Regional Ocean Modeling System(ROMS) with high spatial resolution has been used to investigate this upwelling event. By comparing the ROMS results against tide station data, Argo fl oat profi les and MODIS SST, it is confi rmed that the ROMS reproduces the EHIU well. The cooler-water core(CWC) distinguished by waters(27) 27.5°C in the EHIU, which occurred in the east Qiongzhou Strait mouth area and was bounded by a high temperature gradient, was the focus of this paper. Vertical structure of the CWC suggests that interaction between the westward fl ow and the bathymetry slope played a signifi cant role in the formation of CWC. Numerical experiments indicated that the westward fl ow in the Qiongzhou Strait was the result of tidal rectifi cation over variable topography(Shi et al., 2002), thus tides played a critical role on the development of the CWC. The negative wind stress curl that dominated the east Qiongzhou Strait mouth area suppressed the intensity of the CWC by 0.2–0.4°C. Further, nonlinear interaction between tidal currents and wind stress enhanced vertical mixing greatly, which would benefi t the development of the CWC.  相似文献   

8.
lwn0DorIONDuringthepastdeade,thestchdilyinewsingkn0wedgeonthewestemequatorialPadfic~ndrculation,espedallythel0w-latitudewesternboundaryimtsOLwnes)inthePadficdrin,wasrnarkedbytheimportantdiscoveryoftwowesternb0undaryundercurmtS,theNcwGuineaCoastalUndemirmt(NGCUC)Oindstrometal.,l987)andtheMindanaoUndemin-ent(MUC)peuandCui,l989),whichledtobeterdescrip-tionoftheverticalstruCture0fthePadficLLwncralth0ughunderstandingofthePadricLLWBChdynawhesisstillincomp1etC,bousetheinfluenceofthetwone…  相似文献   

9.
Current data from three moored Acoustic Doppler Profilers (ADPs) deployed in the southern Yellow Sea at sites A (1-24.17°E, 34.82°N), B (122.82°E, 35.65°N) in summer 2001 and site C (120.85°E, 34.99°N) in summer 2003 were analyzed in this paper. Features of the tidal and residual currents were studied with rotary spectral and cross-spectral methods. Main achievements were as follows: 1) Tides dominated the currents. At sites A and B, the semidiurnal tidal current was basically homogeneous in the whole depth, taking a clockwise rotation at site A, and near-rectilinear counterclockwise rotation at site B; while the diurnal tidal current was strong and clockwise near the surface, but decreased and turned counterclockwise with depth; at site C, semidiurnal tidal current dominated and diurnal current took the second, both of which were counterclockwise and vertically homogeneous. Inertial motion contributed to the clockwise component of diurnal fluctuations; 2) The 3-5d fluctuation of residual current w  相似文献   

10.
The three dimensional structure of the western boundary current east of the Vietnam coast was determined from measurements by Argo profiling floats which deployed near the east of the Vietnam Coast in October 2007. The trajectories of the Argo floats provided robust evidence that there does exist southward flowing current along the Vietnam coast. The southward current begins at about 15°N, 111°E, flowing along the 1 000 m isobath and extending to 5°N south. The estimated surface and parking depth velocities obtained from the floats suggest that this southward current can extend to 1 000 m depth. The mean surface velocity of the western boundary current is about 49 cm/s, with the maximum speed exceeding 100 cm/s occurring at 11.6°N, 109.5°E in the direction of 245°. The mean parking depth (1 000 m) velocity is 12–16 cm/s with the maximum speed of 36 cm/s occurring at 12.1°N, 109.7°E in the direction of 239°.  相似文献   

11.
APRELIMINARYSTUDYONQUATERNARYGLACIALLANDFORMSINMT.MA’ANLuoChengde(罗成德)DepartmentofGeography,LeshanTeachersColege,Leshan614004...  相似文献   

12.
The aim of this study was to better understand the mechanisms of regional climate variation in mountain ranges with contrasting aspects as mediated by changes in global climate. It may help predict trends of vegetation variations in native ecosystems in natural reserves. As measures of climate response, temperature and precipitation data from the north, east, and south-facing mountain ranges of Shennongjia Massif in the coldest and hottest months(January and July), different seasons(spring, summer, autumn, and winter) and each year were analyzed from a long-term dataset(1960 to 2003) to tested variations characteristics, temporal and spatial quantitative relationships of climates. The results showed that the average seasonal temperatures and precipitation in the north, east, and south aspects of the mountain ranges changed at different rates. The average seasonal temperatures change rate ranges in the north, east, and south-facing mountain ranges were from –0.0210℃/yr to 0.0143℃/yr, –0.0166℃/yr to 0.0311℃/yr, and –0.0290 ℃/yr to 0.0084℃/yr, respectively, and seasonal precipitation variation magnitude were from –1.4940 mm/yr to 0.6217 mm/yr, –1.6833 mm/yr to 2.6182 mm/yr, and –0.8567 mm/yr to 1.4077 mm/yr, respectively. The climates variation trend among the three mountain ranges were different in magnitude and direction, showing a complicated change of the climates in mountain ranges and some inconsistency with general trends in global climate change. The climate variations were significantly different and positively correlated cross mountain ranges, revealing that aspects significantly affected on climate variations and these variations resulted from a larger air circulation system, which were sensitive to global climate change. We conclude that location and terrain of aspect are the main factors affecting differences in climate variation among the mountain ranges with contrasting aspects.  相似文献   

13.
The typically sparse or lacking distribution of meteorological stations in mountainous areas inadequately resolves temperature elevation variability. This study presented the diurnal and seasonal variations of the elevation gradient of air temperature in the northern flank of the western Qinling Mountain range,which has not been thoroughly evaluated. The measurements were conducted at 9 different elevations between 1710 and 2500 m from August 2014 to August 2015 with HOBO Data loggers. The results showed that the annual temperature lapse rates(TLRs) for Tmean,Tmin and Tmax were 0.45?C/100 m,0.44?C/100 m and 0.40?C/100 m,respectively,which are substantially smaller than the often used value of 0.60°C/100 m to 0.65°C/100 m. The TLRs showed no obvious seasonal variations,except for the maximum temperature lapse rate,which was steeper in winter and shallower in spring. Additionally,the TLRs showed significant diurnal variations,with the steepest TLR in forenoon and the shallowest in early morning or late-afternoon,and the TLRs changed more severely during the daytime than night time. The accumulated temperature above 0°C,5°C and 10°C(AT0,AT5 and AT10) decreased at a lapse rate of 112.8?C days/100 m,104.5?C days/100 m and 137.0?C days/100 m,respectively. The monthly and annual mean diurnal range of temperatures(MDRT and ADRT) demonstrated unimodal curves along the elevation gradients,while the annual range of temperature(ART) showed no significant elevation differences. Our results strongly suggest that the extrapolated regional TLR may not be a good representative for an individual mountainside,in particular,where there are only sparse meteorological stations at high elevations.  相似文献   

14.
应用短期资料的潮流准调和分析方法,对深圳湾4测站两周日海流观测获得的表、中、底层海流资料进行分析,计算了4测站O_1、K_1、M_2、S_2、M_4、MS_4 6个主要分潮的潮流调和常数,并给出各测站在各层的潮流椭圆要素。计算结果表明:深圳湾主要为不规则半日潮流海区,浅水分潮流在总海流中的影响较大;站位1、2和4主要分潮流的北分量大于东分量,而站位3主要分潮流的北分量小于东分量。观测期间余流的流向主要呈北和东北向;最小余流速度出现在站位3;余流流速表层最大,中层次之,底层最小。整个海区潮流的可能最大流速表层在76~102cm/s之间;中层在80~106cm/s之间;底层在56~88cm/s之间。整个海区潮流表现出往复流的性质。  相似文献   

15.
The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.  相似文献   

16.
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar (HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity (PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity (MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.  相似文献   

17.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

18.
Based on the finite-volume coastal ocean model(FVCOM),a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen(BCM).The domain decomposition method,which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy,was employed to estimate the theoretical tidal energy resources and developable energy resources,and to analyze the hydrodynamic effect of the tidal power station.This innovative approach has the advantage of linking physical oceanography with engineering problems.The results indicate that the theoretical annual tidal energy resources is about 2×10~8 k Wh under the influence of tidal power station;Optimized power installation is confirmed according to power generation curve from numerical analysis;the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation.The electricity generation time and power are 3479 hours and 2.55×10~4 KW,respectively.The power station has no effect on the tide pattern which is semi-diurnal tide in both two conditions,but the amplitudes of main constituents apparently decrease in the area near the dam,with the M_2 decreasing the most,about 62.92 cm.The tidal prism shrinks to 2.28×10~7 m~3,but can still meet the flow requirement for tidal power generation.The existence of station increases the flow rate along the waterway and enhances the residual current.There are two opposite vortexes formed on the east side beside the dam of the station,which leads to pollutants gathering.  相似文献   

19.
Aggregate stability is a very important predictor of soil structure and strength,which influences soil erodibility.Several aggregate stability indices were selected for estimating interrill erodibility of four soil types with contrasting properties from temperate and subtropical regions of China.This study was conducted to investigate how closely the soil interrill erodibility factor in the Water Erosion Prediction Project(WEPP) model relates to soil aggregate stability.The mass fractal dimension(FD),geometric mean diameter(GMD),mean weight diameter(MWD),and aggregate stability index(ASI) of soil aggregates were calculated.A rainfall simulator with a drainable flume(3.0 m long × 1.0 m wide × 0.5 m deep) was used at four slope gradients(5°,10°,15° and 20°),and four rainfall intensities(0.6,1.1,1.7 and 2.5 mm/min).Results indicated that the interrill erodibility(Ki) values were significantly correlated to the indices of ASI,MWD,GMD,and FD computed from the aggregate wet-sieve data.The Ki had a strong positive correlation with FD,as well as a strong negative correlation with ASI,GMD,and MWD.Soils with a higher aggregate stability and lower fractal dimension have smaller Ki values.Stable soils were characterized by a high percentage of large aggregates and the erodible soils by a high percentage of smaller aggregates.The correlation coefficients of Ki with ASI and GMD were greater than those with FDand MWD,implying that both the ASI and GMD may be better alternative parameters for empirically predicting the soil Ki factor.ASI and GMD are more reasonable in interrill soil erodibility estimation,compared with Ki calculation in original WEPP model equation.Results demonstrate the validation of soil aggregation characterization as an appropriate indicator of soil susceptibility to erosion in contrasting soil types in China.  相似文献   

20.
Hydrographic data from eleven 1986–1991 cruises at zonal sections near 8°N from the Philippine coast to 130°E were used to examine thermohaline structures and water mass properties of the western boundary currents there, especially those of the Mindanao Undercurrent (MUC). The finding that the MUC consisted of two water masses with salinity of 34.6 at 26.9 σt and 34.52 at 27.2 σt which were remnants of the lower part of the Southern Pacific Subtropical Water (SPSW) and of the Antarctic Intermediate Water (AAIW) of South Pacific origin, respectively, showed that the MUC was not a local transient but originated elsewhere. As the MUC flowed from 7.5°N to 8°N, part of it carrying the SPSW turns anticyclonically and eastward. The Northern Pacific Intermediate Water (NPIW) often joins the MUC, which suggests that the NPIW carried by the MC partly returns northward as a result of the shear between the MC and the MUC or other processes. The shear instability provides the energy for the irregular fluctuation of the MUC. Contribution No. 3256 from the Institute of Oceanology, Chinese Academy of Sciences. Project 49176255 and 49706066 supported by NSFC, and also by Foundation of Post-doctoral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号