首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Plots under conservation tillage may require higher amount of potassium (K) application for augmenting productivity due to its stratification in upper soil layers, thereby reducing K supplying capacity in a medium or long-term period. To test this hypothesis, a field experiment was performed in 2002-2003 and 2006-2007 to study the effect of K and several crop rotations on yield, water productivity, carbon sequestration, grain quality, soil K status and economic benefits derived in maize (Zea mays L)/cowpea (Vigna sinensis L.) based cropping system under minimum tillage (MT). All crops recorded higher grain yield with a higher dose of K (120 kg K2O ha-1) than recommended K (40 kg K2O ha-1). The five years’ average yield data showed that higher K application (120 kg K2O ha-1) produced 16.4% (P<0.05) more maize equivalent yield. Cowpea based rotation yielded 14.2% (P<0.05) higher production than maize based rotation. The maximum enhancement was found in cowpea-mustard rotation. Relationship between yield and sustainable indices revealed that only agronomic efficiency of fertilizer input was significantly correlated with yield. Similarly, higher doses of K application not only increased the water use efficiency (WUE) of all crops, but also reduced runoff and soil loss by 16.5% and 15.8% under maize and 23.3% and 19.7% under cowpea cover, respectively. This study also revealed that on an average 16.5% of left over carbon input contributed to soil organic carbon (SOC). Here, cowpea based rotation with the higher K application increased carbon sequestration in soil. Potassium fertilization also significantly improved the nutritional value of harvested grain by increasing the protein content for maize (by 9.5%) and cowpea (by 10.6%). The oil content in mustard increased by 5.0% and 6.0% after maize and cowpea, respectively. Net return also increased with the application of the higher K than recommended K and the trend was similar to yield. Hence, the present study demonstrated the potential yield and profit gains along with resource conservation in the Indian Himalayas due to annual additions of higher amount of K than the recommended dose. The impact of high K application was maximum in the cowpea-mustard rotation.  相似文献   

2.
Accurate evaluation of soil productivity has been a long-standing challenge. Although numerous models for productivity assessment exist, most are cumbersome to use and require substantial parameter inputs. We developed a new empirical soil productivity model based on field investigations of soil erosion, soil physicochemical properties, and crop yields in the dry-hot valleys (DHVs) in China. We found that soil pH, and organic matter and available potassium contents significantly affected crop yields under eroded conditions of the DHVs. Moreover, available potassium content was the key factor affecting soil productivity. We then modified an existing soil productivity model by adding the following parameters: contents of effective water, potassium, organic matter, and clay, soil pH, and root weighting factor. The modified soil productivity model explained 63.5% of the crop yield. We concluded that the new model was simple, realistic, and exhibited strong predictability. In addition to providing an accurate assessment of soil productivity, our model could potentially be applied as a soil module in comprehensive crop models.  相似文献   

3.
Soil erosion and land use type have long been viewed as being particularly important drivers of soil degradation. The objectives of this study,therefore, were to select a new soil quality index(SQI)which varies significantly with land use/soil erosion,and to evaluate the new SQI using expert opinion. In total, 18 soil physical, chemical, and biochemical properties(indicators) were measured on 56 soil samples collected from four land use/soil erosion categories(rangeland/surface erosion, rangeland/subsurface erosion, cultivated land/surface erosion and dry-farming land/surface erosion). Principal component and classification analysis(PCCA)identified five PCs that explained 77.7% of the variation in soil properties with the biochemical PC varying significantly with land use/soil erosion.General discriminant analysis(GDA) selected urease and clay as the most sensitive properties distinguishing the land use/soil erosion categories.The GDA canonical scores for the new SQI were significantly correlated with expert opinion soil surface summed scores(for soil movement, surface litter, pedestalling, rills and flow pattern) derivedusing the U.S. Department of the Interior Bureau of Land Management(BLM) method. A forward stepwise general regression model revealed that the new SQI values were explained by soil movement,surface litter, and the summed values of the soil surface factors. Overall, this study confirmed that soil quality in the study area in Iran is controlled by land use and corresponding soil erosion.  相似文献   

4.
Transforming sloping land into terraced land is an effective approach to cope with the problems including farmland shortage and severe soil erosion.This paper introduces a new system based on rainwater harvesting and recycling technology,which may effectively improve farmland productivity rainwater use efficiency and reduce water and fertilizer inputs.The new system consists of three subsystems:1) A plough layer with the dual function of crop cultivation and rainwater harvesting; 2) A tank below the plough layer for storing water; 3) An irrigation-drainage subsystem.The plough layer and the storage tank,both treated for reducing seepage,are connected through the irrigation and drainage system.Results showed that,compared with the traditional paddy fields,rice evapotranspiration( and crop coefficient) in the test field remained at a similar level,while the irrigation amount was reduced by 44.3% under the condition of basin irrigation,and the drainage amount decreased by 86.6%,and the non-point source pollution was reduced to 67.7%~87.9%,and the rainwater utilization efficiency increased by 30% and reached 95.4%,and crop yield of middle-season rice reached 9,975 kg/hm2,which was only 0.4% lower than that in the traditional paddy field in the terms of dry matter.The new technology sheds light on new possibilities for transformation of hilly sloping land.  相似文献   

5.
Research on the effects of soil erosion on soil productivity has attracted increasing attention.Purple soil is one of the main soil types in China and plays an important role in the national economy.However,the relationship between erosion and the productivity of purple soils has not been well studied.The purpose of this research was to determine if soil depth,which is dependent on the rate of erosion,has an influence on crop yield and growth.Plot and pot experiments at different soil depths were performed.Results indicate that soils from different parental materials had different growth features and crop yields due to the differential fertility of the derived soils.The yield reduction rate increases exponentially with the depth of eroded soil(level of erosion).The yield reduction rate per unit eroded soil horizon(10 cm) is approximately 10.5% for maize and wheat.  相似文献   

6.
Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replica burned seeded plots, and five replica unburned plots. The main aim was to evaluate the effects of vegetation recovery and spatial distribution patterns on sediment and runoff response between and within the treatment replica erosion plots. Six-years after the wildfire, total sediment and runoff yield in the burned unseeded plots with 20%-30% vegetation cover was still 120.8 and 20.6 times higher than in the unburned treatment plots with 100% ground cover, 8.3 and 6.7 times higher than in the burned seeded plots with 70%-80% vegetation cover, while only 1.6 and 2.0 times higher than in the burned seeded plots with 50%-60% vegetation cover, respectively. The differences in sediment and runoff yield between the treatment plots was proportional to total vegetation cover, distance of bare soil to vegetation cover, magnitude of rainfall characteristics and changes in soil properties, but not slope gradient. Three out of the six within-treatment pairs of two replica plots showed large differences in sediment and runoff yield of up to 6.0 and 4.2 times and mean CV of up to 99.1% and 62.2%, respectively. This was due to differences in the spatial distribution patterns of surface cover features, including aggregation of vegetation and litter covers, the distance of bare soil exposed to vegetation cover closer to the plot sediment collector and micro topographic mounds and sinks between pairs of replica plots. Small differences in sediment and runoff of only 0.9-1.4 folds and mean CV of 8.6%-25% were observed where the within-treatment pairs of replica plots had similar slope, total surface cover components and comparable spatial distribution pattern of vegetation and bare soil exposed surface covers. The results indicated that post-fire hillslopes undergoing effective vegetation recovery have the potential to reduce sediment and runoff production nearer to unburned levels within 6-years after burning while wildfire impacts could last more than 6-years on burned unseeded ridge slopes undergoing slow vegetation recovery.  相似文献   

7.
分布广泛的山地丘陵,地形复杂多样,生态环境脆弱,不合理的土地利用方式会造成生态环境的破坏,导致严重的水土流失。分析山地丘陵区土地利用的地形控制机制,对于山地丘陵区土地利用开发与水土保持等生态保护之间权衡提供科学依据而具有重要现实意义。因此,本文以南方山地丘陵分布较广泛的江西省为例,在SRTM数字高程模型(DEM)的支持下,利用中国资源环境数据中心基于Landsat遥感解译的2000年土地利用数据,分析了江西省土地利用结构与高程、坡度和坡向等地形因子的关系。结果表明地形因子是影响江西省土地利用方式的一个重要因素,具体表现在:(1)随着高程和坡度的增加,耕地面积及占土地总面积的比例都呈下降趋势,南坡耕地面积和比例都大于北坡的耕地面积和比例;(2)在低海拔区,林地面积占土地总面积比例随着海拔高程的增加而增加,当海拔高于400米时,基本稳定;(3)居民点和工矿用地受高程和坡度的影响较大,受坡向影响较小;(4)草地的面积随着海拔的增加呈下降趋势,但其面积比随着高程增加呈缓慢增加,受坡度和坡向的影响较小。  相似文献   

8.
神农架林区是我国物种多样性最为丰富的地区之一,地形地貌复杂,对植被分布影响巨大。本文利用该地区2007年数字高程数据、2007年植被分布图以及2017年野外实地调查数据,基于最大熵模型和空间分析理论,从植被类型和种群两个角度研究该地区不同尺度植被空间分布的地形特征,分别量化植被类型和种群空间分布的地形范围,得到植被类型与地形因子关系模型、植被种群与地形因子关系模型。结果表明:①神农架林区影响植被空间分布的地形因子不同,其中影响针叶林分布的最重要的地形因子是高程和高程变异系数,影响阔叶林分布的是高程和坡向,影响灌丛分布的是坡向变率和坡向,影响草丛分布的较为分散;②典型植被种群分布的地形范围和植被类型的基本一致,其中90%针叶林分布在高程1600~2600 m间,典型种群巴山冷杉和华山松主要分布在高程1700~3200 m和1700~2200 m;85%的阔叶林分布在高程1000~2000 m间,典型种群青冈类和鹅耳枥主要分布在高程1200~2200 m间;95%的灌丛分布在坡向变率0~40°间,典型种群杜鹃和蔷薇主要分布在坡向变率小于40°的范围,但相应的关系模型存在差异,植被类型与地形因子为高斯模型,典型种群与地形因子关系模型相对复杂,不同种群的分布模式不同;③虽然坡度常作为数字地形的重要因子,但本文研究发现该地区坡度对植被类型和种群分布的影响不明显。研究结果可为神农架林区植被保护和恢复,以及植被规划和管理提供基础参考。  相似文献   

9.
甘肃黄土高原作物生长期土壤干旱及气候生产力特征分析   总被引:5,自引:0,他引:5  
分析了近40年甘肃黄土高原区域作物生长期土壤干旱和气候生产力特征,结果表明:(1) 土壤干旱和气候生产力在空间上表现为全区一致,区域内相关性很好.(2) 时间演变规律上,土壤干旱有加重的趋势、气候生产力呈下降的趋势.(3) 土壤干旱和气候生产力变化阶段性明显,年际变化具有3~5a的振荡,4a周期最为明显.  相似文献   

10.
Soil erosion in hilly areas of the Sichuan Basin is a serious concern over sustainable crop production and sound ecosystem. A 3-year experiment was conducted using the method of runoff plots to examine the effects of terracing and agroforestry in farmland systems on soil and water conservation of slope fields in the hilly areas in Jianyang County, Sichuan Province, Southwestern China. A power function (Y = aX^b) can statistically describe the relationship between water runoff (Y) and rainfall (X). The regression equation for the treatment of sloping terraces with crops (Plot 2) is remarkably different from that for the treatment of sloping terraces with grasses and trees (Plot 1) and the conventional up- and down-slope crop system (Plot 3) regarding equation coefficients, while regression equations are similar between Plot 1 and Plot 3. Water runoff amount and runoff coefficient of slope fields increased by 21.5-41.0 % and 27.5 - 69.7 % respectively, compared to those of sloping terraces, suggesting that terracing notably reduced the water runoff in the field. In the case of sloping terraces, lower amount of water runoff was observed on sloping terraces with crops than on sloping terraces with grasses and trees. Sediment yields on the slope fields in the normal year of rainfall distribution were notably higher (34.41 - 331.67 % and 37.06-403.44 % for Plot 1 and Plot 2, respectively) than those on sloping terraces, implying that terracing also plays a significant role in the reduction in soil erosion. It is suggested that terracing with crops is significantly effective for soil and water conservation in cultivated farmland, while the conventional practice of up- and down- slope cultivation creates high rates of water runoff and soil sediment transport. Terracing with grasses and fruit trees shows a less reduction in water runoff than terracing with crops, which was observed in the 3-year experiments.  相似文献   

11.
Soil nitrogen(N) is critical to ecosystem services and environmental quality. Hotspots of soil N in areas with high soil moisture have been widely studied, however, their spatial distribution and their linkage with soil N variation have seldom been examined at a catchment scale in areas with low soil water content. We investigated the spatial variation of soil N and its hotspots in a mixed land cover catchment on the Chinese Loess Plateau and used multiple statistical methods to evaluate the effects of the critical environmental factors on soil N variation and potential hotspots. The results demonstrated that land cover, soil moisture, elevation, plan curvature and flow accumulation were the dominant factors affecting the spatial variation of soil nitrate(NN), while land cover and slope aspect were the most important factors impacting the spatial distribution of soil ammonium(AN) and total nitrogen(TN). In the studied catchment, the forestland, gully land and grassland were found to be the potential hotspots of soil NN, AN and TN accumulation, respectively. We concluded that land cover and slope aspect could be proxies to determine the potential hotspots of soil N at the catchment scale. Overall, land cover was the most important factor that resulted in the spatial variations of soil N. The findings may help us to better understand the environmental factors affecting soil N hotspots and their spatial variation at the catchment scale in terrestrial ecosystems.  相似文献   

12.
《山地科学学报》2020,17(1):1-15
Glacier recession is a globally occurring trend. Although a rich body of work has documented glacial response to climate warming, few studies have assessed vegetation cover change in recently deglaciated areas, especially using geospatial technologies. Here, vegetation change at two glacier forefronts in Glacier National Park, Montana, U.S.A.was quantified through remote sensing analysis,fieldwork validation, and statistical modeling.Specifically, we assessed the spatial and temporal patterns of landcover change at the two glacier forefronts in Glacier National Park and determined the role of selected biophysical terrain factors(elevation, slope, aspect, solar radiation, flow accumulation, topographic wetness index, and surficial geology) on vegetation change(from nonvegetated to vegetated cover) at the deglaciated areas.Landsat imagery of the study locations in 1991, 2003,and 2015 were classified and validated using visual interpretation. Model results revealed geographic differences in biophysical correlates of vegetation change between the study areas, suggesting that terrain variation is a key factor affecting spatialtemporal patterns of vegetation change. At Jackson Glacier forefront, increases in vegetation over some portion or all of the study period were negatively associated with elevation, slope angle, and consolidated bedrock. At Grinnell Glacier forefront,increases in vegetation associated negatively with elevation and positively with solar radiation.Integrated geospatial and field approaches to the study of vegetation change in recently deglaciated terrain are recommended to understand and monitor processes and patterns of ongoing habitat change in rapidly changing mountain environments.  相似文献   

13.
Crop residue incorporation has been widely accepted as a way to increase soil carbon (C) sequestration and sustain soil fertility in agroecosystems. However, effect of crop residue incorporation on greenhouse gas (GHG) emissions in rice paddy soils remains uncertain. A field experiment was conducted to quantify emissions of CH4 and N2O and soil heterotrophic respiration (RH) from a paddy rice field under five different crop residue treatments (i.e., 150 kg N ha-1 of synthetic N fertilizer application only [NF], 150 kg N ha-1 of synthetic N fertilizer plus 5.3 Mg ha-1 wheat residue [NF-WR1], 150 kg N ha-1 of synthetic N fertilizer plus 10.6 Mg ha-1 wheat residue [NF-WR2], 75 kg N ha-1 of synthetic N fertilizer plus 10.6 Mg ha-1 wheat residue [50%NF-WR2] and 150 kg N ha-1 of synthetic N fertilizer plus 21.2 Mg ha-1 wheat residue [NF-WR3]) in southwest China. Our results showed that crop residue incorporation treatments (NF-WR1, NF-WR2, 50%NF-WR2, NF-WR3) significantly increased CH4 emissions by at least 60%, but N2O emissions were not enhanced and even suppressed by 25% in the NF-WR3 treatment as compared to the NF treatment. Soil RH emissions were comparable among experimental treatments, while crop residue incorporation treatments significantly increased soil carbon sequestrations relative to the NF treatment. Overall, CH4 emissions dominated total global warming potentials (GWP) across all experimental treatments. The average yieldscaled GWPs for the NF and NF-WR1 treatments were significantly lower than for the NF-WR2, 50%NFWR2 and NF-WR3 treatments. Given the comparable yield-scaled GWPs between the NF and NF-WR1 treatments, the NF-WR1 treatment could gain net carbon sequestration as compared with the NF treatment with net soil carbon loss. Our findings suggest that the NF-WR1 treatment should be an effective option to sustain rice production while mitigating GHG emissions from the rice field in China.  相似文献   

14.
采用具有阻尼因子的函数模型,使用遗传算法(genetic algorithm,GA)辅助非线性最小二乘(nonlinear least squares,NLS)方法对相位参数进行求解。结果表明:1)相较于标准余弦函数模型,该方法的反演相位与土壤湿度的相关系数有较为明显的提升,反演结果也更加稳定,在5°~15°、5°~20°、5°~25°三个高度角范围内的相关系数均大于0.68,不同高度角之间的相关系数差值小于0.07;2)反演精度有不同程度提高,R 2提高5.72%~76.06%,RMSE减小6.12%~24.24%,MAE减小2.7%~28.3%,将该方案所求相位用于多星线性回归模型后平均RMSE减小10%。  相似文献   

15.
In this paper,the quantitative relationship between the wild fruit communities and direct environmental factors is discussed on the basis of detailed data on landscape scale habitats obtained through field vegetation investigation.The results from TWINSPAN and DCCA showed that:1) In the distribution sections of the wild fruit forest in the Keguqin Mountain region,the basic patterns characteristic of the different habitats are due to topographic factors,nutrients and moisture conditions;2) The elevation affected the most basic differentiation of plant communities in the study area,indicating that the elevation condition was the most important factor restricting the distribution of the wild fruit communities in the study area;3) The close relationship between the moisture content in the upper soil layer and the elevation reflected the influence of moisture conditions on both wild fruit and herb-layer communities;4) Nutrient differences not only indicated that the habitat conditions were different in themselves but also showed that the present nutrient conditions of the habitats were seriously affected by human activities.In summary,under complicated mountainous topographic conditions,the habitat conditions for the communities differed very significantly,and the combination of elevation,soil moisture content,total nitrogen,slope aspect,and pH value influenced and controlled the formation of community distribution patterns in the study area.  相似文献   

16.
Climate change scenarios predict an increase in the frequency of heavy rainfall events in some areas. This will increase runoff and soil erosion, and reduce agricultural productivity, particularly on vulnerable mountainous agricultural lands that is already exhibiting high rates of soil erosion. Haphazard implementation of soil and water conservation (SWC) interventions on scattered fields is inefficient in reducing soil erosion. The objective of this study was to identify areas at high risk of erosion to aid the design and implementation of sustainable SWC using GIS analysis and farmers' participation approach. A 25 m digital elevation model (DEM) was used to derive layers of flow accumulation, slope steepness and land curvature, which were used to derive an erosion-risk (priority) map for the whole watershed. Boundaries of farmers' fields were mapped and verified by the community and each field was classified into high, moderate or low erosion risk. Fields with low flow accumulation (top of hill) and/or steep slope and/or convex slope were assigned high erosion risk and therefore high implementation priority. The study showed that more than 54% of the fields were classified into high erosion risk areas. Accordingly, a community-watershed plan was established, revised and approved by the community.Incentive loans to implement SWC measures were distributed to 100 farmers based on the priorities of their fields. Judged by local farmers and using 16 randomly selected fields, 90% of the targeted areas were correctly identified using the erosion risk map. After two years, the conservation measures had led to marked improvement of soil conservation. The approach is simple and easy to comprehend by the community and provides scientific basis to prioritize the implementation of SWC and to target the most degraded areas, which amplify the impact of these in reducing the vulnerability to land degradation.  相似文献   

17.
The relation between runoff and sediment and land cover is investigated in the Cedar Creek Watershed (CCW), located in Northeastern Indiana, United States. The major land cover types in this watershed are cultivated land, woodland and pasture /Conservation Reserve Program (CRP), which account for approximate 90 % of the total area in the region. Moreover, land use was changed tremendously from aooo to 9004, even without regarding the effect of the crop rotation system (corn & soybean). At least 49 % of land cover types were changed into other types in this period. The land cover types, ranking by changing area from high to low series, are rye, soybean, corn, woodland and pasture/CRP. The CCW is divided into 21 subwatersheds, and soil and water loss in each sub-watershed is computed by using Soil and Water Assessment Tool (SWAT). The results indicate that the variations in runoff and sediment have positive relation to the area of crops (especially corn and soybean); sediment is more sensitive to land cover changes than runoff; more heavy rainfall does not always mean more runoff because the combination of different land cover types always modify runoff coefficient; and rye, soybean and corn are the key land cover types, which affected the variation in runoff and sediment in the CCW.  相似文献   

18.
We investigated the quantity and quality 0f fallen l0gs in different Tsuga l0ngibracteata f0rest c0mmunities in the Tianba0yan Nati0nal Nature Reserve. We used redundancy analysis t0 determine the spatial distributi0n 0f fallen l0gs in the different f0rest c0mmunities and t0 analyze the relati0nships am0ng stand structure, t0p0graphic fact0rs and human disturbance. The v0lume, c0vered area, mean l0g length and number 0f fallen l0gs differed significantly am0ng f0rest types (P 〈 0.05), but mean diameter at breast height sh0wed n0 significant difference (P 〉 0.05). The l0g v0lume and c0vered area in different f0rest types sh0wed the f0ll0wing trend: T. l0ngibracteata pure f0rest 〈 T. l0ngibracteata + Olig0staehyum scabrifl0rur 〈 T. l0ngibraeteata + hardw00d 〈 Rh0d0dendr0n simiarum + T. l0ngibraeteata 〈 T. l0ngibraeteata + Phyll0stachys heter0cycla pubescens. The spatial distributi0n patterns 0f l0gs quantity and quality indicated that l0g v0lume and c0vered area were str0ngly affected by envir0nmental fact0rs in the f0ll0wing 0rder: human disturbance 〉 elevati0n 〉 sl0pe p0siti0n 〉 b0le height 〉 tree height 〉 sl0pe aspect 〉 density 〉 basal area 〉 sl0pe gradient. The relative c0ntributi0n 0f envir0nmental variables 0n the t0tal variance was t0p0graphy (76%) 〉 disturbance (42%) 〉 stand structure (35%). T0p0graphy and disturbance c0mbined explained 8.2% 0f the variance. Fallen l0~s auantitv and aualitvwere negatively related t0 elevati0n and sl0pe p0siti0n, and p0sitively ass0ciated t0 human disturbance. The l0g v0lume decreased fr0m n0rthern t0 s0uthern sl0pes. Envir0nmental fact0rs had the highest impact 0n class I (slightly decayed), and l0west impact 0n class V (highly decayed).  相似文献   

19.
The object of the research is to compare the model performance and explain the error source of original logistic regression landslide susceptibility model(abbreviated as or-LRLSM) and landslide ratio-based logistic regression landslide susceptibility model(abbreviated as lr-LRLSM) in the Chishan watershed with a serious landslide disaster after 2009 Typhoon Morakot. The landslide inventory induced by 2009 Typhoon Morakot in South Taiwan is the main research material, while the Chishan watershed is the research area. Six variables, including elevation, slope, aspect, geological formation, accumulated rainfall, and bank erosion, were included in the two models. The performance of lr-LRLSM is better than that of or-LRLSM. The Cox & Snell R2, Nagelkerke R2 value, and the area under the relative operating characteristic curve(abbreviated as AUC) of lrLRLSM is larger than those of or-LRLSM, and the average correct ratio for the lr-LRLSM to predict landslide or non-landslide is larger than that of orLRLSM by 5.0%. The increase of the average correct ratio(abbreviated as ACR) difference from or-LRLSM to lr-LRLSM shows in slope, revised accumulated rainfall, aspect, geological formation and bank erosion variables, and only light decreases in elevation variable. The error sources of continuous variables in building the or-LRLSM is the dissimilarity between the distribution of landslide ratio and production of coefficient and characteristic values, while those of categorical variables is due to low correlation of landslide ratio and the coefficient value of each parameter. Using the classification of landslide ratio as the database to build logistic regression landslide susceptibility model(abbreviated as LRLSM) can revise the errors. The comparison of or-LRLSM and lr-LRLSM in the Chishan watershed also shows that building the landslide susceptibility model(abbreviated as LSM) by using lr-LRLSM is practical and of better performance than that by using the or-LRLSM.  相似文献   

20.
The contradiction between the shortage of land for agriculture due to rapid expansion of industrialization and urbanization and increasing population pressure is projected to impose great threats to future food security.Agricultural land suitability evaluation is an effective approach to improve the utilization of land resources for crop production and thus enhance the capacity of food provision.In this study, we evaluated the land suitability for agriculture of the production space in the Taihang Mountains by three steps: establishing indicator system, determining weights for indicators, and constructing a fuzzy matter-element model to assess the grades of suitability.Results showed that the land suitability had a significant linear correlation with potential crop yields, indicating our evaluation was effective to predict crop production.The spatial pattern of land suitability for crop production demonstrated that land with higher suitability was generally located in piedmont plains and basins, while land with lower suitability was mostly situated in mountainous areas.The area of highly, moderately, marginally suitable and unsuitable land for agriculture was 32.13%, 28.58%, 37.49% and 1.80% of the production space, respectively.However, the correlation degree analysis indicated that the requirements of these four suitability grades were currently not satisfied but could be potentially fulfilled.In terms of indicator weights, soil properties were much more important than topography and location conditions to influence the grades of suitability.Among all indicators, slope, soil organic matter, soil texture and soil depth were the most influential factors, so slope farming prevention and organic fertilization were most likely to improve land suitability for agriculture.Compared the outputs of our land suitability evaluation model with the distribution of the existing croplands, we found that about 66.52% of marginally suitable and 54.55% of unsuitable land for agriculture were currently used for croplands.Therefore, de-farming policy should be implemented in areas of these two suitability grades.In contrast, cropland expansion was encouraged in the land that was highly or moderately suitable for agriculture.Our evaluation of agricultural land suitability is beneficial for future land use planning and decision-making in the Taihang Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号