首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Peak discharge plays an important role in triggering channelized debris flows. The rainfall regimes and rainfall characteristics have been demonstrated to have important influences on peak discharge. In order to explore the relationship between rainfall regimes and peak discharge, a measuring system was placed at the outlet of a small, debris flow-prone catchment. The facility consisted of an approximately rectangular stilling basin, ending with a sharp-crested weir. Six runoff events were recorded which provided a unique opportunity for characterizing the hydrological response of the debris flow-prone catchment. Then, a rainfall–runoff model was tested against the flow discharge measurements to have a deep understanding of hydrological response. Based on the calibrated rainfall-runoff model, twelve different artificially set rainfall patterns were regarded as the input parameters to investigate the effect of rainfall regimes on peak discharge. The results show that the rainfall patterns have a significant effect on peak discharge. The rainfall regimes which have higher peak rainfall intensity and peak rainfall point occur at the later part of rainfall process are easy to generate larger peak discharge in the condition of the same cumulative rainfall and duration. Then, in order to explore the relationship between rainfall characteristics and peak discharge under different cumulative precipitation and different duration, 167 measured rainfall events were also collected. On the basis of rainfall depth, rainfall duration, and maximum hourly intensity, all the rainfall events were classified into four categories by using K-mean clustering. Rainfall regime 1 was composed of rainfall events with a moderate mean P(precipitation), a moderate D(duration), and a moderate I_(60)(maximum hourly intensity). Rainfall regime 2 was the group of rainfall events with a high mean P, long D. Rainfall regime 3, however, had a low P and a long D. The characteristic of Rainfall regime 4 was high I_(60) and short duration with large P. The results show that the rainfall regime 2 and 4 are easier to generate peak discharge as the rainfall intensity plays an important role in generating peak discharge. The results in this study have implications for improving peak discharge prediction accuracy in debris flow gully.  相似文献   

2.
In the modern times ,the population growth,development of industrial and agricultural production and the petroleum exploitation,brought about the unceasing expansion of artificial oasis and abrupt increase of water demand .The artificial hydraulic irrigation engineering took the place of the natural river systerm,the reservoirs took the placeof natural lakds,which in turn enhanced the space-time redistribution of surface water based on the natural evolution,and so did groundwater.The groundwater recharge reduced 26.2% in 46 years from 1950 to 1995 in the southern piedmont fold plain of Tarim Basin due to mean yearly population increase rate of 27.7‰ and associated with the water use rate increasing from 24.6% to 58.4%.At the same time the artificial water system seepage give primary play to groundwater recharge,which is up to 57.6% whilst that of the natural system reduce to 33.7%.As a result,groundwater level drop 3-5m widespread except some irrigation area and surrounding of plain reservoir.Sping water discharge also reduce about 37.6% and discharge some continuously move away to the north with the value of 0.5-1.2km in the past 40 years.  相似文献   

3.
Extreme and prolonged rainfall in the Tunka Ridge caused several debris flows in the vicinity of the Arshan village(Siberia, Russia) on June 28, 2014. These debris flows, in spite of similar geological conditions, had different velocity, peak discharge and alluvial fan volume values. The flow velocity was from 3.5 m/s to 19.6 m/s, the peak discharge ranged from 63 m3/s to 13566 m3/s, and the alluvial fan volume varied from 4.13×103 to 8.45×105 m3. Such a great range of values is due to the morphometric parameters of the debris flow basins. The article deals with the influence of morphometric parameters of debris flow basins, such as the basin area, the average slope, Melton ratio, relief ratio on the debris flow velocity, peak discharge and volume of alluvial fans. In this debris flow event the average values of slope angle and total basin relief of the debris flow basins did not affect the values of debris flow velocity, peak discharge and alluvial fan volume. The highest correlations were observed with the debris flow basin area that was connected with the water inflow volume into the debris flow basins during the rainfall. The unequal water distribution among debris flow basins also had an impact on the debris flow velocity, peak discharge and volume of alluvial fans.  相似文献   

4.
STREAMFLOW CHARACTERISTICS OF THE EASTERN QINGHAI-XIZANG PLATEAU   总被引:1,自引:0,他引:1  
The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain chains. Annual runoff generally increases with precipitation which is augmented southward by the rise in topography. Rainfall, snow melt, glacier melt and groundwater are the primary sources of stream flow, and the presence of permafrost enhances the flashiness of runoff response to rainfall and snowmelt events. Peak flows are concentrated between June and September. And winter is low flow season. Three types of runoff patterns may be distinguished according to their primary sources of water supply: snowmelt and rainfall, glacier melt and snowmelt, and groundwater. Large rivers generally drain more than one environments and their runoff regime reflects an integration of the various flow patterns on the plateau.  相似文献   

5.
Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m~3 s~(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.  相似文献   

6.
Reviving Ancient Water Tunnels in the Desert-Digging for Gold?   总被引:3,自引:0,他引:3  
The water shortage in the Middle East is a well-known problem. The introduction of diesel operated pumps for irrigation has caused a severe drop in groundwater levels. At the same time the demand for groundwater is growing to alarming proportions. Alternative ways of groundwater supply and management need to be found to halt social and economical disaster in the future. Why not look at history? Qanats are subterranean tunnels ancient civilizations built to access groundwater. The technique is a sustainable method of groundwater extraction. Throughout the Middle East some settlements still make use of these ancient systems. In the summer of 2000, a community rehabilitation of a qanat was executed International Center for Areas (ICARDA) and with support from the Agricultural Research in Dry international donors. The renovation served as a pilot community intervention within a participatory action research project aimed at evaluating the use of qanats in Syria. In a second stage of the project, the pilot was scaled up to a nation-wide survey of Syrian qanats in 2001. This resulted in qanat renovations on other sites executed in 2oo2 and 2oo3 with further international support. This paper compares the first pilot renovation with a recent qanat renovation that took place in Qarah, Syria.  相似文献   

7.
The study on sediment production and its relationship with climatic and hydrological factors in watershed is a major environment issue of concern in the international community. Based on the observational records covering the period from 1954 to 1999, the characteristics of precipitation changing over the Dasha River Watershed in Anhui Province and its relation to sediment yield were studied using tendency analysis and correlation analysis.Results showed that the precipitation of the Dasha River Watershed has high variability. In those 46 years, 34% of spring rainfall, 58% of summer rainfall and 30% of annual rainfall will be considered anomaly. The gray correlation analysis shows that sediment discharge correlates most closely with the frequency of the rainstorm with a daily precipitation above 100mm, secondly with the frequency of the rainstorm with a daily precipitation of 50-100mm, and thirdly with the number of rainy days. Their correlation coefficients are 0.98,0.90 and 0.85 respectively. In addition,the paper suggests the major countermeasures and methods for controlling of soil and water losses in this area.  相似文献   

8.
Impulsion discharge technique is a new technology to prevent geological disasters,such an approach is in a liquid medium into the borehole electrode to gain access to high-voltage,forme discharge,and mechanical wave energy into electrical energy,produce a shockwave and in the same time compact the surrounding soil.Building on the existing foundation of the Act has been applied to engineering and water conservancy projects,the results were very good.  相似文献   

9.
The relationship between the variability of the Eastern India Ocean Warm Pool (EIWP) and the spring precipitation in China is studied in the paper based on an analysis of the Simple Ocean Data Assimilation (SODA) Sea Surface Temperature (SST) data, the reanalysis data of monthly grid wind field at 925 hPa with a resolution of 2.5^* latitude and longitude from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), and the monthly mean rainfall data from 160 observational stations in China. The results show that there is a strong correlation between the EIWP variability and the spring precipitation in China. The area, volume and intensity indices of the EIWP are negatively correlated with the spring precipitation in southwestern China, while they are positively correlated with the spring precipitation in the rest of China, especially in the northeast. For this correlation between the EIWP variability and the spring precipitation in China, it is found that the correlative relationship is mainly connected with the variations of the moisture transport by the warm air flow, which is under the influence of the EIWP variability, into the inland of China in spring. Two causative factors may influence this transport. One is the variation of the moisture transport carried by the warm air flow from the Arabian Sea influenced by the EIWP variability. The other is the variation of the equator-crossing flow (70^*-90^*E) influenced by the EIWP anomaly in the previous winter which exerts its effect on the moist warm air transported from the Southern Hemisphere. The position and intensity of the Western North Pacific Subtropical High (WNPSH) variability caused by EIWP variation also influence the spring precipitation in China.  相似文献   

10.
1IntroductionFlow is the key mechanism by which pollutants are transmitted from one point to another in hydro-geologic systems. Groundwater flow is not indepen-dent of the geological formation within which it occurs. Hydraulic conductivity which is a measure of groundwater flow is strongly related with the am-bient geologic properties such as texture,porosity and topography. These properties do not only con-trol the rate of groundwater flow but also limit the occurrence,hence the dispersion of…  相似文献   

11.
1 Introduction Studying the impact of land-use on groundwater is a key issue in setting up a sound land-use planning project. Many studies have shown that land-use planning is fun- damental for the reliable protection of ecologically valuable wetlands. Thus special attention should be given to the effect of land-use on the hydrologic cycle and the protection of groundwater systems, especially recharge and discharge (Boeye and Verheyen, 1992; Bernàldez et al., 1993; Pucci and Pope, 1995; Bat…  相似文献   

12.
Due to long-term over-exploitation of groundwater in Beijing Municipality,regional groundwater funnels have formed and land subsidence has been induced.By combining a groundwater monitoring network,GPS monitor-ing network data,radar satellite SAR data,GIS and other new technologies,a coupled process model based on the dy-namic variation of groundwater and the deformation response of land subsidence has been established.The dynamic variation of groundwater funnels and the land subsidence response process were analyzed systematically in Beijing.Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District,the northeast of Chaoyang District and the northwest of Tongzhou District,with an average decline rate of groundwa-ter level of 2.66 m/yr and a maximum of 3.82 m/yr in the center of the funnels.Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution,where the maximum land subsidence rate was about-41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2.Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel,this consistency was not perfect.The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR,GIS,GPS,providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.  相似文献   

13.
Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area, which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available, torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation, there was insufficient 10 minute critical rainfall to make its contour map). Generally, the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low, medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.  相似文献   

14.
As an additive of gasoline,methyl tert-butyl ether(MTBE)has a higher solubility in water,which is about 20 times as high as that of benzene.This characteristic results in MTBE dissolving out of the gasoline into the soil and groundwater.Due to relative unique physicochemical behavior of MTBE it would be an ideal candidate for use in environmental forensic investigations.In order to study the transport and distribution of MTBE in saturated zone of ground water,a two-dimensional experimental cell was setup to simulate the real environment of the groundwater flow.The effects of soil and groundwater flow velocity on the MTBE transport were investigated.The results show that the mobile distance of MTBE in vertical direction was smaller than that in horizontal direction paralleling with the groundwater flow.Because the main dynamics of groundwater flow direction was convection and dispersion,the movement of MTBE is also diffusion in the vertical direction.In addition,the transport of MTBE was more quick in high permeability porous media,and the increase of groundwater flow velocity can accelerate the MTBE plume de-velopment,but the irregularity and randomness of the plume are enhanced synchronously.These research results can give some helps for the investigation of MTBE movement in the groundwater,also can make some references for other petroleum contamination behavior.  相似文献   

15.
It is important to understand how land use change impacts groundwater recharge,especially for regions that are undergoing rapid urbanization and there is limited surface water.In this study,the hydrological processes and re-charge ability of various land use types in Guishui River Basin,China(in Beijing Municipality) were analyzed.The impact of land use change was investigated based on water balance modeling,WetSpass and GIS.The results indicate that groundwater recharge accounts for only 21.16% of the precipitation,while 72.54% is lost in the form of evapotranspiration.The annual-lumped groundwater recharge rate decreases in the order of cropland,grassland,urban land,and forest.Land use change has resulted in a decrease of 4 × 106 m3 of yearly groundwater recharge in the study area,with a spatially averaged rate of 100.48 mm/yr and 98.41 mm/yr in 1980 and 2005,respectively.This variation has primarily come from an increase of urban area and rural settlements,as well as a decrease of cropland.  相似文献   

16.
In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m~3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.  相似文献   

17.
The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial information (STMB) versus refined spatial information map (RSIM)) of soil physical properties, including field capacity, soil porosity and saturated hydraulic conductivity are used respectively as input data for Water Flow Model for Lake Catchment (WATLAC) to determine their effectiveness in simulating hydrological processes and to expound the effects on model performance in terms of estimating groundwater recharge, soil evaporation, runoff generation as well as partitioning of surface and subsurface water flow. The results show that: 1) the simulated stream flow hydrographs based on the STMB and RSIM soil data reproduce the observed hydrographs well. There is no significant increase in model accuracy as more precise soil physical properties information being used, but WATLAC model using the RSIM soil data could predict more runoff volume and reduce the relative runoff depth errors; 2) the groundwater recharges have a consistent trend for both cases, while the STMB soil data tend to produce higher groundwater recharges than the RSIM soil data. In addition, the spatial distribution of annual groundwater recharge is significantly affected by the spatial distribution of soil physical properties; 3) the soil evaporation simulated using the STMB and RSIM soil data are similar to each other, and the spatial distribution patterns are also insensitive to the spatial information of soil physical properties; and 4) although the different spatial information of soil physical properties does not cause apparent difference in overall stream flow, the partitioning of surface and subsurface water flow is distinct. The implications of this study are that the refined spatial information of soil physical properties does not necessarily contribute to a more accurate prediction of stream flow, and the selection of appropriate soil physical property data needs to consider the scale of watersheds and the level of accuracy required.  相似文献   

18.
Rainfall intensity and slope gradient are two of the most important factors affecting the variations of runoff nitrogen(N).However,the effects of slope gradient and rainfall intensity on N loss via surface flow and interflow on weathered granite slopes are poorly understood.In this study,12 artificial rainfalls(three rainfall intensities and four slope gradients)were simulated to investigate the coupling loss characteristics of surface flow–interflow–total nitrogen(TN),nitrate nitrogen(NO_3~--N)and ammonia nitrogen(NH_4~+-N)on weathered granite slopes.The results show that slope gradient has a greater impact on the surface flow when the rainfall intensity is relatively large.The effect gradually weakens with the decrement of rainfall intensity.The interflow yield increases firstly with the prolongation of rainfall duration,then tends to be stable and finally decreases.The total surface flow percentage increases with rainfall intensity while it decreases with increasing slope gradient with a range of 10.88%-71.47%.The TN loss concentration of the surface flow continually decreases with rainfall duration while that of the interflow shows different fluctuations.However,the TN loss loads of both surface flow and interflow increase with increasing rainfall intensity and slope gradient.The NO_3~--N concentration of interflow is much higher than that of the surface flow.The NH_4~+-N concentration is always less than that of NO_3~--N with no significant difference between surface flow and interflow.The percentages of the TN,NO_3~--N,and NH_4~+-N total loss load and concentration of surface flow and interflow were analyzed.The results show that N loss via both surface flow and interflow occurs mainly in the form of NO_3~--N.Most of the N loss is caused by interflow which is the preferential path of runoff nutrient loss.These findings provide data support and underlying insights for the control of runoff and N loss on the weathered granite slopes.  相似文献   

19.
Long-term kinematic research of slowmoving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 m3 in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous component in the long-termcontinuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined(rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19~0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and thedownslope seepage pressure in the shallow soil mass resulting from rainfall events.  相似文献   

20.
The precipitation recharge coefficient(PRC), representing the amount of groundwater recharge from precipitation, is an important parameter for groundwater resources evaluation and numerical simulation. It was usually obtained from empirical knowledge and site experiments in the 1980 s. However, the environmental settings have been greatly modified from that time due to land use change and groundwater over-pumping, especially in the Beijing plain area(BPA). This paper aims to estimate and analyze PRC of BPA with the distributed hydrological model and GIS for the year 2011 with similar annual precipitation as long-term mean. It is found that the recharge from vertical(precipitation + irrigation) and precipitation is 291.0 mm/yr and 233.7 mm/yr, respectively, which accounts for 38.6% and 36.6% of corresponding input water. The regional mean PRC is 0.366, which is a little different from the traditional map. However, it has a spatial variation ranging from –7.0% to 17.5% for various sub-regions. Since the vadose zone is now much thicker than the evaporation extinction depth, the land cover is regarded as the major dynamic factor that causes the variation of PRC in this area due to the difference of evapotranspiration rates. It is suggested that the negative impact of reforestation on groundwater quantity within BPA should be well investigated, because the PRC beneath forestland is the smallest among all land cover types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号