首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
墙体、窗户等单元构件是建筑物重要组成部分,精细提取其几何参数及位置信息对于完整表达建筑物整体模型具有重要意义。针对单一点云数据源无法获取建筑物单元构件相关参数并完整表达室内外模型重建问题,本文提出一整套融合室内外多源点云数据的BIM模型重建技术。为验证方法的有效性,选取河南理工大学测绘与国土信息工程学院教学楼为实验区域,室内外数据采集时间为2019年5月。在对实验区域机载、车载和地面点云数据进行预处理的基础上,分别选取各点集共轭特征点,以高精度的地面点云为基准,将机载和车载点云融合到地面点云。为提高后期模型重建精度及处理效率,以点云间最小空间距离的方式剔除重叠区域冗余数据。对建筑物进行整体平面与立面剖切,将剖切面在CAD中进行跟踪绘制二维线划图,将二维线划图导入Revit软件中绘制轴网与标高,并利用提取到的墙体几何参数编辑墙体族类型进行BIM模型重建。根据提取到的窗户几何参数统计其类型并编辑窗户族,将其归为有规律性和无规律性两类,有规律性窗户单元找出其重复性规律及位置控制参数,无规律性窗户单元逐个放置,二者结合优化BIM模型。为验证模型重建精度,选取建筑物代表性立面,以人工实测立面边长为参照,将由点云数据提取到的相对应立面边长及模型边长与之对比分析,其误差集中分布在0.0~0.2 m之间,存在0.2 m以上误差,但大部分在0.3 m以下。实验结果证明了该方法的准确性。  相似文献   

2.
建筑物立面是城市地物的重要组成部分,而移动激光扫描是获取城市地物三维信息的重要手段之一。本文提出了一种基于移动激光扫描点云的建筑物立面半自动提取算法。该方法首先构建研究区水平网格;然后计算局部点云几何特征,并且将特征投影到水平网格生成点云特征图像;接着基于支持向量机(Support Vector Machine,SVM)对建筑物立面网格进行粗提取;最后使用网格属性(形状系数、网格面积、最大高程)对粗提取结果进行过滤,并将结果反投影到三维空间中得到精确的建筑物立面。以卡内基梅隆大学的移动激光扫描点云进行试验后表明,本算法能够较好地提取出建筑物立面,提取精度为84%,召回率为90%,数据修正后精度为88%,召回率为91%。通过与现有算法对比,本文提出的算法具有较高精度。  相似文献   

3.
本文提出一种结合多种投影影像从车载激光扫描数据中提取建筑物的方法。该方法首先将点云数据投影到XOY平面,生成多种投影影像;然后结合建筑物几何语义特征,对已获取的投影影像进行几何约束与形态学运算,得到建筑物种子区域;在此基础上,通过设置高差阈值,在最高高程影像上进行建筑物种子区域的八邻域区域生长,得到建筑物区域;最后将影像上的建筑物区域反投影到三维空间,提取出建筑物目标。实验结果表明,该方法能有效提取点云数据中的建筑物立面,取得较高的正确率和完整率,且大大提高了计算效率。  相似文献   

4.
同时搭载差分卫星定位系统、惯性测量单元和街景全景相机的移动测量系统,可高效获取具有精确位姿信息的城市环境高分辨率街景图像,为建筑物立面结构实景三维精细建模提供了重要的数据源.由于地面遮挡、视野限制、影像畸变等因素,单视街景影像难以有效覆盖较大建筑物立面结构.本文提出多视街景影像几何纠正与拼接方法,消除多视影像间的几何、曝光不一致性.利用谷歌开源街景影像数据实验,结果表明该方法可提高建筑物立面重建的纹理质量,同时也具有较高的几何精度.  相似文献   

5.
针对现有机载激光雷达(LiDAR)点云高精度提取方法存在建筑物屋顶面提取精度较低、适应性较差等问题,提出一种分步式建筑物屋顶面点云高精度提取方法。该方法通过主成分分析计算点云可靠性指标,选取可靠平面点;然后,利用K-means算法实现可靠点在法向量空间上的聚类,并通过逐步平面估计,提取初始屋顶面片;最后,进行面片的合并与未标记点的归属判断。实验结果表明,本文方法提取结果优异,效率较高,且对不同复杂程度的建筑物屋顶面均能取得较好的提取效果。  相似文献   

6.
针对山区道路特点和机载激光点云数据处理的难点,依据道路点高程特点对原始点云滤波得到地面点集,利用点邻域内法向量和坡度、邻域内平面法向量偏角方差来描述山区完好道路表面的平滑特征提取候选道路点集,根据道路几何上连通的特性设置距离阈值对候选道路点集进行欧式距离聚类精化道路点,采用形态学细化方法提取道路线。以某一山区机载激光点云数据为例,实现道路提取方法,并验证方法的可行性。  相似文献   

7.
基于保形变换和横轴切平面投影的街景影像纠正方法   总被引:1,自引:0,他引:1  
街景影像由于畸变难以直接进行三维重建方面的应用,针对该问题,提出一种基于保形变换和横轴切平面投影的街景影像纠正方法。首先,参照表面网格尽可能刚性形变的思想,在影像上放置一定数量的网格作为纠正参考;然后,引入保形能量函数有效地修复街景影像中的变形,恢复影像中的直线结构;最后,估计适当的切平面,利用横轴切平面投影对街景影像进行投影转换,纠正街景影像中的非线性畸变。实验表明,修复和纠正后的街景影像可直接作为三维立面建模的辅助数据。  相似文献   

8.
屋顶模型重建影响到建筑物完整模型重建质量,屋顶面点云分割质量对屋顶模型重建具有重要意义。针对传统RANSAC算法在屋顶点云面片分割时易产生错分割、过分割等问题,本文顾及点云位置信息,提出一种对点云重新分配的改进RANSAC点云分割算法。算法暂时剔除非平面内点,选取平面内点集中3个点作为初始样本,平面拟合判定邻域是否有效,从有效邻域中选取标准差值最小的3个点为初始模型。利用RANSAC算法对屋顶点云进行分割。利用K近邻算法统计误分类点与面片的距离降低误分类,优化过分割面片并进行连通性分析,利用距离及法向量一致性检验的方法重分配非平面内点。为验证本文算法有效性,选取芬兰Helsinki地区的3栋相互独立的复杂建筑物屋顶以及上海某小区的6栋建筑物群屋顶作为实验数据。在2组数据中,本文提出的改进RANSAC算法分割屋顶面片的平均准确率分别为92.17%、87.82%,78%的建筑物屋顶不存在过分割。在第2组数据中,所有分割面片上的点与其对应的最佳拟合平面的距离的标准差的平均值为0.030 m。实验结果表明,本文算法分割建筑物屋顶面片的准确率较高,较好的抑制了过分割现象,且抗噪能力强。  相似文献   

9.
LiDAR作为一种主动式获取高精度地表几何信息的地形图测绘技术,其获取的点云具有较高的相对精度与绝对精度,可作为无控或稀少控制条件下(无人机)航空影像高精度几何定位的地理参考数据。影像几何定位所能达到的精度依赖于几何参考数据自身的精度,因此评价LiDAR点云的精度对于将其作为地理参考实现航空影像高精度几何定位,具有较强的理论价值与实践意义。本文提出了利用高精度数字线划图(DLG)作为几何参考评定机载LiDAR点云精度的方法。首先,通过比对DLG中高程注记点的高程与LiDAR点云中对应位置处的高程,实现LiDAR点云高程精度评定;然后,通过统计LiDAR墙面点在平面上的投影点到DLG房屋矢量轮廓线的距离,实现LiDAR点云平面精度评定。实验结果证明,本文试验区域LiDAR点云平面和高程精度分别可达到7.2 cm和8.3 cm,可作为大比例尺无人机航空遥感控制数据的有效选择。  相似文献   

10.
如何快速有效地获取高精度、高分辨率的地理空间信息数据已经成为城市智慧化发展的重要问题,本文分析了三维街景地图的发展现状与目前多数街景数据采集手段存在的问题,介绍了利用中海达一体化移动三维激光测量系统采集点云数据的过程,以及结合徕卡CYCLONE软件进行建模的方法,对原始测量的点云数据进行去噪、平滑、拼接配准等处理后得到目标建筑物精准的表面信息,进而构建三维表面模型,将校正过的照片进行纹理映射得到真实的三维模型。实验证明:此方法可快速地获取较为精准的点云数据并且实现对建筑物的快速建模。  相似文献   

11.
随着机载激光雷达成像技术(LiDAR)的不断发展,激光点云数据处理的相关研究也在不断深入。点云滤波是机载激光雷达点云数据处理的重要环节之一。针对多数经典滤波方法在复杂地形和地物条件下的滤波效果不够理想的现状,提出一种新的基于相对变异系数的地形自适应正则化薄板样条插值点云滤波方法。采用二维区域增长获取初始插值参考点后,基于线特征约束对参考点进行优化,去除部分低可靠性参考点以得到较准确、分布离散均匀的初始插值参考点集合,在此基础上通过正则化薄板样条插值方式来拟合地形点与地物点之间的滤波分类面,完成对机载激光点云的高精度自适应滤波。对比实验结果表明,本文的地形自适应滤波方法在2组实验数据的总体错误率分别达到4.14%和4.17%,在错误率和多地形综合表现等方面具有优势,且滤波运算效率在目前主流的滤波算法中处于较高水平。另外,实验结果验证了地形自适应滤波方法在斜坡、山脊等起伏较多的复杂地形与包含植被和建筑物的混合地形等处的点云滤波结果具有较好的准确性。  相似文献   

12.
车载LiDAR点云中包含地面、建筑物、行道树、路灯等丰富地物类别,自动对这些不同类别点云进行分类,对点云中目标的识别、提取及重建都具有重要意义。本文提出了一种基于Gradient Boosting的自动分类方法。该方法首先对车载激光点云进行数据预处理,然后计算点云的协方差矩阵、密度比、高程相关特征、局部平面特征、投影特征等,再计算点云特征直方图与垂直分布直方图,采用K-means方法对这两者分别进行聚类,并将其聚类类别值也作为特征,从而构建出20维的点云特征向量,应用Gradient Boosting分类方法进行自动分类。为了验证本文方法的有效性,从某城镇场景的车载激光点云数据中选取部分代表区域共144W点作为训练数据集,然后选取另一较大区域的点云共312W点作为测试数据集。使用训练好的分类器对测试数据集进行分类,分类结果总体准确率达到了93.38%,耗时631s,说明此分类方法具有较高的分类准确率,同时也具备较高的效率。  相似文献   

13.
机载LiDAR是获取地表DEM的重要技术之一。本文针对机载LiDAR点云数据在复杂城区环境下的大型建筑及低矮地物滤波问题,提出一种新的二面角滤波法。利用空间二面角的平面角可以表达空间两相交平面相对位置的原理,实现机载LiDAR点云数据滤波。首先,算法提取点云数据中的高程突变点,以非突变点的二面角余弦均值稳定性作为判定迭代结束的条件;其次,分别统计高程突变和非突变点集的二面角余弦值频率分布,以交点处对应余弦值和最后一次迭代的坡度值作为LiDAR点云滤波的判定条件;最后,利用数学形态学“开”算子,去除残留低矮植被,得到可靠的滤波结果。对同一区域机载LiDAR点云数据,通过“二面角法”与“渐进三角网法”进行滤波处理。实验结果表明,二面角滤波法能有效地降低地物点错分为地面点的百分率,且在去除地物信息的同时能良好地保留地形特征。  相似文献   

14.
道路绿化带是城市园林绿地系统重要组成部分,具有重要的生态和环境服务功能,道路绿化带信息的精细分类与提取以及绿化带的动态分析对于道路信息化管理具有重要意义。本文提出基于车载LiDAR技术的道路绿化带自动提取与绿植地物精细分类算法。为验证算法有效性,选取北京市丰台区某路段作为实验区域,一期试验数据采集时间为2015年6月,二期试验数据采集时间为2015年9月。将车载LiDAR点云数据作为原始数据,对原始数据进行剪裁分块等预处理,提高算法运行速度。首先对每段道路点云数据进行地面、低矮地物与高地物分类,并将低矮地物与地面点进行组合;然后通过绿化带的点云特性与空间特征,精确提取出每段点云数据中的绿化带,根据所提取的绿化带确定分类范围,利用各类地物点云的特征差别,对绿化带内地物进行详细分类;最后对比同一区域内的多期绿化带数据,从而判断绿化带面积以及绿化带中的各种地物是否发生变化。为验证算法精度,采用人工交互的方式提取绿化带,并对绿化带内各类地物进行人工分类,以此作为参照将人工统计得到的信息与自动提取出的绿化带信息以及各个分类地物信息进行对比,试验区人工提取绿化带总面积为13 027 m 2,自动提取绿化带总面积为12 749 m 2,2组数据相差278 m 2,相对误差为0.02。自动分类算法在试验区场景中杆状地物的探测率为80%,树木的探测率81.81%,灌木探测率为73.91%。对比2期绿化带数据,发现面积缩减量为129.5 m 2,另外新增3株灌木。实验结果说明了本文所述算法的准确性。  相似文献   

15.
机载LiDAR在公路勘测方面的用途日益广泛。该文对直升机机载LiDAR在高速公路改扩建中的应用技术路线可行性进行了研究论证,从地面控制测量、点云数据获取、点云数据处理、成果应用等多个方面进行了阐述,通过分析LiDAR点云数据在5种不同地面控制点布设方案校正下的点云数据精度,论证了利用地面控制点对直升机机载LiDAR点云数据进行平面和高程校正的可行性。  相似文献   

16.
车载激光扫描系统能够快速准确地获取街道环境的点云数据,但由于扫描点云的点密度高、数据量大、空间分布不均匀、地物相互遮挡及城市街道环境复杂等特点,难以直接从原始点云数据中提取出路坎点云。本文首先通过分析路坎点云的空间分布特征和局部几何特征,构建包含相对高程、法向量方向、多尺度高程差及多尺度高程方差的点云特征向量;然后,采用SVM提取城市街道环境车载激光扫描数据中的路坎点云,并对提取结果进行聚类去噪,优化路坎点云。最后,通过Street Mapper 360系统和Lynx Mobile Mapper V100 系统采集的4份不同城市街道环境车载激光扫描数据对本文方法进行验证,其中路坎点云提取结果的完整度均超过了94.99%、准确度均超过91.88%、精度亦均达到了90.55%以上。实验结果表明,本文方法能够精确地提取复杂城市街道环境中规则或不规则的路坎点云,且具有较强的稳健性,适用于各类复杂的城市街道环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号