首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 562 毫秒
1.
星载InSAR技术是一种卫星对地观测技术,精度高、覆盖范围广,被广泛用于各种滑坡监测。分析了星载InSAR技术原理,探讨了星载InSAR技术在滑坡地质灾害专业监测预警中的精度情况,并就误差控制展开详细论述,最后就重庆市武隆区石桥乡场镇滑坡群地质灾害一级专业监测预警项目中星载InSAR技术的应用情况进行了具体论述。  相似文献   

2.
应用CRInSAR技术监测三峡库区滑坡形变   总被引:2,自引:0,他引:2  
在对CRInSAR技术的基本理论和处理算法及实际应用进行研究的基础上,比较CRInSAR技术与传统InSAR技术的异同后认为,CRInSAR技术更适合三峡库区的滑坡监测。  相似文献   

3.
以贵州省水城县为研究区,使用SBAS InSAR分别对2018-07~2019-07鸡场镇滑坡发生前31期升轨和30期降轨Sentinel-1A数据进行处理,提取地表形变场。结果表明:1)鸡场镇滑坡发生前SBAS InSAR形变场并未出现明显形变,已超出12 d重访周期SAR的形变监测能力;2)研究区存在5个明显形变区,推断与斜坡失稳、地下/露天采矿和矿物加工的抽排水有关;3)升降轨数据的SBAS InSAR形变场相互补充、验证,可显著提升卫星雷达对山区滑坡隐患早期识别和形变监测能力。研究方法可为贵州省以及中国西南山区滑坡隐患调查与早期识别提供技术参考。  相似文献   

4.
针对升降轨Sentinel-1A数据获取的得荣县古学乡2个大型滑坡形变特征不一致的问题,利用R指数、敏感性和相干性等参数,开展InSAR技术用于该地区滑坡监测的适用性研究。结果表明,降轨数据比升轨数据更适合2处大型滑坡的识别与监测,并很好地解释了升降轨滑坡监测结果不一致的原因。对2个滑坡进行时间序列形变分析及多维形变特征分解,结果表明,2个滑坡在2019~2020年累积形变量最大值分别约为300 mm和230 mm,需加强关注。  相似文献   

5.
针对传统监测技术GNSS、水准测量等难以开展大范围、高精度和高空间分辨率的地表沉降监测工作,采用InSAR技术对某城市17景TerraSAR-X数据进行分析处理,得到2012~2013年度的地面沉降信息,采用水准与InSAR同步观测方式,开展地面沉降星地一体化同步观测实验研究,利用水准观测结果对InSAR技术地面沉降监测的精度进行分析评价,结果表明InSAR地面沉降监测具有较高精度,为同类地质灾害、地面裂缝监测提供参考。  相似文献   

6.
为探究InSAR和GPS形变数据对断层深部滑动的敏感性,分别模拟走滑断层、正断层和逆冲断层在不同深度的滑动分布模型,并基于不同精度的InSAR和GPS形变数据反演了3类断层在不同深度位置的滑移分布。对3类断层的结果进行对比分析发现,实验得到的结论具有较好的一致性。结果表明,在相同深度时,基于高精度InSAR和GPS形变数据反演的深部滑动残差较小,而基于常规精度InSAR数据反演结果的残差较大;随着深度的增加,反演深部滑动的探测性呈逐步下降的趋势,其中基于高精度InSAR和GPS数据的滑动探测性高于基于常规精度InSAR的滑动探测性。当InSAR和GPS数据精度相同时,维度对断层深部滑动的探测性有一定影响。  相似文献   

7.
三峡库区崩滑地质灾害变形监测技术研究及应用   总被引:1,自引:1,他引:0  
以三峡库区巫山-万州段为例,介绍了GPS在滑坡变形监测中的应用,并开展了InSAR和声发射技术在滑坡、危岩体变形监测应用的试验性研究。同时,根据实际需要,还研制了基于GPRS的地质灾害无线遥测系统,实践证明,该系统具有工程应用价值。  相似文献   

8.
用INSAR作地面沉降监测的试验研究   总被引:41,自引:17,他引:24  
介绍了合成孔径雷达干涉测量进行天津市地区地面沉降监测的试验。对于试验区域,原始资料选取的原则,剪裁出的试验区域的影像进行InSAR处理都作了简要的说明,最后将利用D-InSAR得到的天津市区的地面沉降监测结果与水准测量的监测结果进行了对比,并据此得到一些初步认识。  相似文献   

9.
针对L波段ScanSAR模式雷达数据滑坡识别能力应用有限的问题,通过距离向频谱分割方法估计电离层相位,以提高InSAR的监测精度,并探讨利用ScanSAR模式进行InSAR滑坡早期识别应用的可行性。  相似文献   

10.
2018-10-11西藏江达县波罗乡白格村附近发生山体滑坡,导致金沙江断流并形成堰塞湖。收集高分二号、高分三号卫星数据,分析滑坡形成的堰塞湖对上游村镇的影响,并基于Sentinel-1以及ALOS-2 PALSAR-2数据,分别应用PS-InSAR和offset tracking技术获取滑坡体在滑坡发生前的运动特征。结果表明,白格滑坡在灾害发生前已有明显的滑移,根据PS-InSAR技术结果,2017~2018年白格滑坡边缘处存在年平均视线向滑动速率超过2.5 cm/a的PS点,且在白格滑坡周边发现2处潜在滑坡;根据offset tracking结果,白格滑坡在2015-07~2018-07期间的3个时间段呈现出滑动不断加速的特征,滑坡累计滑动量超过30 m。应用InSAR技术可在滑坡灾害发生前识别出活动性滑坡,为滑坡监测预警提供重要依据。  相似文献   

11.
针对位于山区且受大量采空区影响的边坡,利用传统测量方法监测耗费人力、物力且光学遥感难以定量识别其是否为潜在滑坡的问题,本文提出一种融合研究区小基线集(SBAS-InSAR)地表监测数据、坡度及坡向的识别方法。通过SBAS-InSAR技术获得研究区地表雷达视线(LOS)方向形变速率,将其转化为垂直方向形变速率,并根据研究区DEM建立坡度及坡向分析图,根据不同山体的坡度、坡向找到易发生滑坡的区域,融入该区域垂直方向的时序形变速率,对其进行滑坡识别。实验表明:卡房镇周边受采空区的影响较大,多数区域垂直方向年形变速率大于10 mm/a;通过本文方法对研究区潜在滑坡进行识别,发现在研究区的21处历史滑坡点中,有16处被识别为潜在滑坡,5处未被识别但也位于发生形变的区域内,表明本文方法对潜在滑坡的识别精度高,具有可行性。该研究为识别采空附近的潜在滑坡提供了一种新的思路,可以有效识别采空区附近山体边坡是否处于潜在的、不明显的滑动状态,对滑坡灾害具有预警作用。  相似文献   

12.
Topographic attributes have been identified as the most important factor in controlling the initiation and distribution of shallow landslides triggered by rainfall.As a result,these landslides influence the evolution of local surface topography.In this research,an area of 2.6 km 2 loess catchment in the Huachi County was selected as the study area locating in the Chinese Loess Plateau.The landslides inventory and landslide types were mapped using global position system(GPS) and field mapping.The landslide inventory shows that these shallow landslides involve different movement types including slide,creep and fall.Meanwhile,main topographic attributes were generated based on a high resolution digital terrain model(5 m × 5 m),including aspect,slope shape,elevation,slope angle and contributing area.These maps were overlaid with the spatial distributions of total landslides and each type of landslides in a geographic information system(GIS),respectively,to assess their spatial frequency distributions and relative failure potentials related to these selected topographic attributes.The spatial analysis results revealed that there is a close relation between the topographic attributes of the postlandsliding local surface and the types of landslide movement.Meanwhile,the types of landslide movement have some obvious differences in local topographic attributes,which can influence the relative failure potential of different types of landslides.These results have practical significance to mitigate natural hazard and understandgeomorphologic process in thick loess area.  相似文献   

13.
With high spatial resolution,on-demand-flying ability,and the capacity for obtaining threedimensional measurements,unmanned aerial vehicle(UAV) photogrammetry is widely used for detailed investigations of single landslides,but its effectiveness for landslide detection and monitoring in a large area needs to be investigated.The Heifangtai terrace in the Loess Plateau of China is a loess terrace that is extremely susceptible to irrigation-induced loess landslides.This paper used UAV-based photogrammetry for a series of highresolution images spanning over 30 months for landslide detection and monitoring of the terrace with an area of 32 km~2.Dense and evenly distributed ground control points were established and measured to ensure the high accuracy of the photogrammetry results.The structure-from-motion(Sf M) technique was used to convert overlapping images into orthographic images,3D point clouds,digital surface models(DSMs) and mesh models.Using multitemporal differential mesh models,landslide vertical movements and potential landslides were detected and monitored.The results indicate that a combination of UAV-based orthophotos and differential mesh models can be used for flexible and accurate detection and monitoring of potential loess landslides in a large area.  相似文献   

14.
This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)technologies.A key research question addressed is whether displacement trends captured by a radio-frequency“mobile”d-GNSS network compare with the spatial and temporal patterns in activity indicated by satellite interferometric synthetic aperture radar(InSAR)and unmanned aerial vehicle(UAV)photogrammetry.Field testing undertaken at Ripley Landslide,near Ashcroft in south-central British Columbia,Canada,demonstrates the applicability of new geospatial technologies to monitoring ground control points(GCPs)and railway infrastructure on a landslide with small and slow annual displacements(<10 cm/yr).Each technique records increased landslide activity and ground displacement in late winter and early spring.During this interval,river and groundwater levels are at their lowest levels,while ground saturation rapidly increases in response to the thawing of surficial earth materials,and the infiltration of snowmelt and runoff occurs by way of deep-penetrating tension cracks at the head scarp and across the main slide body.Research over the last decade provides vital information for government agencies,national railway companies,and other stakeholders to understand geohazard risk,predict landslide movement,improve the safety,security,and resilience of Canada’s transportation infrastructure;and reduce risks to the economy,environment,natural resources,and public safety.  相似文献   

15.
Wudu County in northwestern China frequently experiences large-scale landslide events.High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region.The aim of this research is to compare and combine landslide susceptibility assessments of rainfalltriggered and earthquake-triggered landslide events in the study area using Geographical Information System(GIS) and a logistic regression model.Two separate susceptibility maps were produced using inventories reflecting single landslide-triggering events,i.e.,earthquakes and heavy rain storms.Two groups of landslides were utilized: one group containing all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake.Subsequently,the individual maps were combined to illustrate the locations of maximum landslide probability.The use of the resulting three landslide susceptibility maps for landslide forecasting,spatial planning and for developing emergency response actions are discussed.The combined susceptibility map illustrates the total landslide susceptibility in the study area.  相似文献   

16.
《山地科学学报》2020,17(9):2068-2080
Landslides are one of the most disastrous geological hazards in southwestern China. Once a landslide becomes unstable, it threatens the lives and safety of local residents. However, empirical studies on landslides have predominantly focused on landslides that occur on land. To this end, we aim to investigate ashore and underwater landslide data synchronously. This study proposes an optimized mosaicking method for ashore and underwater landslide data. This method fuses an airborne laser point cloud with multi-beam depth sounder images.Owing to their relatively high efficiency and large coverage area, airborne laser measurement systems are suitable for emergency investigations of landslides.Based on the airborne laser point cloud, the traversal of the point with the lowest elevation value in the point set can be used to perform rapid extraction of the crude channel boundaries. Further meticulous extraction of the channel boundaries is then implemented using the probability mean value optimization method. In addition, synthesis of the integrated ashore and underwater landslide data angle is realized using the spatial guide line between the channel boundaries and the underwater multibeam sonar images. A landslide located on the right bank of the middle reaches of the Yalong River is selected as a case study to demonstrate that the proposed method has higher precision thantraditional methods. The experimental results show that the mosaicking method in this study can meet the basic needs of landslide modeling and provide a basis for qualitative and quantitative analysis and stability prediction of landslides.  相似文献   

17.
Rainfall induced landslides are a common threat to the communities living on dangerous hill-slopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence (WoE) method was applied to calculate the positive (presence of landslides) and negative (absence of landslides) factor weights. A combination of analytical hierarchical process (AHP) and fuzzy membership standardization (weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren’s algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of WoE, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号