首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P 0.001). The SOC concentrations were in the order: oil-polluted wetland corn field paddy field forest land reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4~+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4~+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution.  相似文献   

2.
Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates( 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.  相似文献   

3.
In this study, the sequencing of 16S ribosomal DNA was used to characterize the soil bacterial community composition and diversity in Liaohe estuarine wetland. Soil samples were taken from different locations in the wetland dominated by reed. Moreover, the soil quality parameters were evaluated (pH, moisture, organic matter, total nitrogen, available nitrogen, total phosphorus, available phosphorus). The results showed that the organic matter and nutrient contents were significantly higher in irrigated wetland than those in natural wetland. Major phylogenic groups of bacteria in soil samples including Proteobacteria, Acidobacteria, Gemmatimonadetes, Actinobacteria and Cyanobacteria were analyzed and we found that Proteobacteria was the most abundant in the community, and the phylum Acidobacteria was more abundant in irrigated wetland. Beta diversity analyses indicated that the soil bacterial community was mainly affected by sampling sites rather than seasons. In general, the bacterial community in natural wetland was not significantly different with that in artificial irrigated wetland. Artificial hydraulic engineering irrigated according to the water requirement rule of reed, increased the production of reeds, changed the way of wetland soil material input, but the diversity of bacterial community kept stable relatively.  相似文献   

4.
Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.  相似文献   

5.
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.  相似文献   

6.
Labile organic carbon(LOC) and carbon management index(CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The objective of this study was to investigate the effects of land use types and landscape positions on soil quality as a function of LOC and CMI. A field study in a small watershed in the red soil hilly region of southern China was conducted, and soil samples were collected from four typical lands(pine forest(PF) on slope land, barren hill(BH) on slope land, citrus orchard(CO) on terrace land and Cinnarnornum Camphora(CC) on terrace land) at a sampling depth of 20 cm. Soil nutrients, soil organic carbon(SOC), LOC and CMI were measured. Results showed that the LOC and CMI correlated to not only soil carbon but also soil nutrients, and the values of LOC and CMI in different land use types followed the order CC PF CO BH at the upperslope, while CO CC BH PF at mid-slope and down-slope. With respect to slope positions, the values of LOC and CMI in all the lands were followed the order: upper-slope down-slope midslope. As whole, the mean values of LOC and CMI in different lands followed the order CC CO PF BH. High CMI and LOC content were found in the terrace lands with broadleaf vegetations. These results indicated that the terracing and appropriate vegetations can increase the carbon input and lability and decrease soil erosion. However, the carbon pools and CMI in these lands were significantly lower than that in reference site. This suggested that it may require a long time for the soil to return to a highquality. Consequently, it is an efficient way to adopt the measures of terracing and appropriate vegetations planting in improving the content of LOC and CMI and controlling water and soil loss in fragile ecosystems.  相似文献   

7.
Understanding the effects of land cover changes on ecosystem carbon stocks is essential for ecosystem management and environmental protection, particularly in the transboundary region that has undergone marked changes. This study aimed to examine the impacts of land cover changes on ecosystem carbon stocks in the transboundary Tumen River Basin (TTRB). We extracted the spatial information from Landsat Thematic Imager (TM) and Operational Land Imager (OLI) images for the years 1990 and 2015 and obtained convincing estimates of terrestrial biomass and soil carbon stocks with the InVEST model. The results showed that forestland, cropland and built-up land increased by 57.5, 429.7 and 128.9 km2, respectively, while grassland, wetland and barren land declined by 24.9, 548.0 and 43.0 km2, respectively in the TTRB from 1990 to 2015. The total carbon stocks encompassing aboveground, belowground, soil and litter layer carbon storage pools have declined from 831.48 Tg C in 1990 to 831.42 Tg C in 2015 due to land cover changes. In detail, the carbon stocks decreased by 3.13 Tg C and 0.44 Tg C in Democratic People’s Republic of Korea (North Korea) and Russia, respectively, while increased by 3.51 Tg C in China. Furthermore, economic development, and national policy accounted for most land cover changes in the TTRB. Our results imply that effective wetland and forestland protection policies among China, North Korea, and Russia are much needed for protecting the natural resources, promoting local ecosystem services and regional sustainable development in the transnational area.  相似文献   

8.
The urban population and urbanized land in China have both increased markedly since the 1980s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In particular, the effect of rapid urbanization on the storage of soil carbon has not been studied extensively. In this study, we compared the soil carbon stocks of different land use types in Beijing Municipality. We collected 490 top-soil samples (top 20 cm) from urban and suburban sites within the Sixth Ring Road of Beijing, which cover approximately 2400 km2, and the densities of soil organic carbon (SOC), soil inorganic carbon (SIC), and total carbon (TC) were analyzed to determine the spatial distribution of urban and suburban soil carbon characteristics across seven land use types. The results revealed significant differences in soil carbon densities among land use types. Additionally, urban soil had significantly higher SOC and SIC densities than suburban soil did, and suburban shelterbelts and productive plantations had lower SIC densities than the other land use types. The comparison of coefficients of variance (CVs) showed that carbon content of urban topsoil had a lower variability than that of suburban topsoil. Further findings revealed that soil carbon storage increased with built-up age. Ur- ban soil built up for more than 20 years had higher densities of SOC, SIC and TC than both urban soil with less than 10 years and sub- urban soil. Correlation analyses indicated the existence of a significantly negative correlation between the SOC, SIC, and TC densities of urban soil and the distance to the urban core, and the distance variable alone explained 23.3% of the variation of SIC density and 13.8% of the variation of TC density. These results indicate that SOC and SIC accumulate in the urban topsoil under green space as a result of the conversion of agricultural land to urban land due to the urbanization in Beijing.  相似文献   

9.
The first account of the effects of wetland reclamation on soil nematode assemblages were provided, three sites in Heihe River Basin of Northwest China, that is grass wetland(GW), Tamarix chinensis wetland(TW) and crop wetland(CW) treatments, were compared. Results showed that the majority of soil nematodes were presented in the 0–20 cm soil layers in CW treatments, followed by in the 20–40 cm and 40–60 cm layers in GW treatments. Plant-feeding nametodes were the most abundant trophic groups in each treatment, where GW(91.0%) TW(88.1%) CW(53.5%). Generic richness(GR) was lower in the TW(16) than that in GW(23) and CW(25). The combination of enrichment index(EI) and structure index(SI) showed that the soil food web in GW was more structured, and those in TW was stressed, while the enrichment soil food web was presented in the CW treatment. Several ecological indices which reflected soil community structure, diversity, Shannon-Weaver diversity(H′), Evenness(J′), Richness(GR) and modified maturity index(MMI) were found to be effective for assessing the response of soil namatode communities to soil of saline wetland reclamation. Furthermore, saline wetland reclamation also exerted great influence on the soil physical and chemical properties(p H, Electric conductivity(EC), Total organic carbon(TOC), Total nitrogen(Total-N) and Nitrate Nitrogen(N-NO3–)). These results indicated that the wetland reclamation had significantly effects on soil nematode community structure and soil properties in this study.  相似文献   

10.
A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0–10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC. Foundation item: Under the auspices of Key Project of National Natural Science Foundation of China (No. 40231016)  相似文献   

11.
土地利用变化对吴江市水田土壤有机碳储量的影响分析   总被引:2,自引:0,他引:2  
 农业表层土壤碳库容易受人为强烈干扰,而又可以在较短的时间尺度上进行调节,当今我国经济发达地区土地利用变化必然会对土壤固碳产生重要影响。本研究以江苏省吴江市水稻土为例,利用新一代中分辨率成像光谱仪(MODIS)和TM/ETM影像提取了1984年稻田面积,以及这部分稻田在2000-2005年的土地利用变化状况。研究中以最大似然法对TM/ETM、MODIS影像应用归一化植被指数(NDVI)、增强型植被指数(EVI)和陆地水分指数(LSWI)掩膜的方法作了识别提取;同时,结合第二次全国土壤普查、2003年耕地地力调查点和吴江市农林局土肥指导站长期定位点的土壤有机碳数据估算了1984年和2000-2005年土壤碳库变化情况。结果表明:近20多年来尽管吴江市水稻土水耕熟化过程中有机碳总体呈增加的趋势,但由于大量稻田被非农用地所取代,导致土壤固碳能力大幅度下降,尤其从2001年开始从"碳汇"变成"碳源"。因此,在我国经济发达区应密切关注耕地转换成非农用地而导致的土壤有机碳的损失。  相似文献   

12.
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.  相似文献   

13.
WETLANDS IN CHINA: FEATURE, VALUE AND PROTECTION   总被引:2,自引:1,他引:1  
The estimated total area of wetland in China is more than 25.9 million hectares including about 11.9 million hectares of marshes and bogs, 9.1 million hectares of lake and about 2.2 million hectares of coastal salt marshes and mudflats. The area of wetland is equivalent to 2.7% of the land surface. China also has 2.7 million hectares of shallow sea water (less 5m in depth at low tide). Marshes and bogs are equivalent 1.3% of the land surface. Only three provinces (regions)—Qinghai, Xizang (Tibet) and Heilongjiang — have a larger total area of marsh and bog. According to the structure, type and development of wetland in different river basins, wetland can be classified nine main regions. The experiments indicate that the coefficient of the marsh to regulate flood is similar to that of lakes. Wetlands occupy 17.8% of the Sanjiang Plain area, the annual carbon contribution is 0.78 × 104t. Carbon released from marsh soil return into atmosphere is 3.95 × 106t/a. At present there is a sharp contradiction between population growth and natural resources shortage, causing wetland to be exerted with huge pressures and serious threats. Foundation item: Under the auspices of the Key B Item of the Chinese Academy of Sciences (KZ951-B1-201-02). Biography: LU Xian-guo (1957 —), male, a native of Changchun City, Jilin Provice, professor. His research interests include wetland process and environmental effect.  相似文献   

14.
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.  相似文献   

15.
Amplicon sequencing of functional genes is a powerful technique to explore the diversity and abundance of microbes involved in biogeochemical processes. One such key process, denitrification, is of particular importance because it can transform nitrate(NO3-) to N2 gas that is released to the atmosphere. In nitrogen limited alpine wetlands, assessing bacterial denitrification under the stress of wetland desertification is fundamental to understand nutrients, especially nitrogen cycling in alpine wetlands, and thus imperative for the maintenance of healthy alpine wetland ecosystems. We applied amplicon sequencing of the nirS gene to analyze the response of denitrifying bacterial community to alpine wetland desertification in Zoige, China. Raw reads were processed for quality, translated with frameshift correction, and a total of 95,316 nirS gene sequences were used for rarefaction analysis, and 1011 OTUs were detected and used in downstream analysis. Compared to the pristine swamp soil, edaphic parameters including water content, organic carbon, total nitrogen, total phosphorous, available nitrogen, available phosphorous and potential denitrification rate were significantly decreased in the moderately degraded meadow soil and in severely degraded sandy soil. Diversity of the soil nirS-type denitrifying bacteria communities increased along the Zoige wetland desertification, and Proteobacteria and Chloroflexi were the dominant denitrifying bacterial species. Genus Cupriavidus(formerly Wautersia), Azoarcus, Azospira, Thiothrix, and Rhizobiales were significantly(P0.05) depleted along the wetland desertification succession. Soil available phosphorous was the key determinant of the composition of the nirS gene containing denitrifying bacterial communities. The proportion of depleted taxa increased along the desertification of the Zoige wetland, suggesting that wetland desertification created specific physicochemical conditions that decreased the microhabitats for bacterial denitrifiers and the denitrification related genetic diversity.  相似文献   

16.
Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon (SOC) fractions in forest ecosystems. This study had two aims: (1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and (2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains (SW Poland, Central Europe). The content of the most labile fraction of carbon (dissolved organic carbon, DOC) decreases with altitude, but the content of fulvic acids (FA), clearly increases in the zone above 1000 m asl, while the stabile fraction (humins, non-hydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests (Norway spruce), while a smaller - under deciduous forests (European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above 1000 m asl may lead to a substantial increase in the stable humus fraction (mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization. In the lower zone (below 1000 m asl), a decrease in the most stable humus forms can be expected, accompanied by an increase of DOC contribution, which will result in a reduction in SOC pools. Overall, the expected prevailing (spatial) effect is a decreasing contribution of the most stable humus fractions, which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.  相似文献   

17.
1INTRODUCTIONDesertification is one of the most serious land degrada-tion, which results in the deterioration of physical, che-mical, and biological characteristics of soils (UNEP, 1992). Soil organic carbon (SOC) was considered to be a key index in evaluation of soil quality, soil degradation and soil C sequestration(SCHLENGSINGER etal., 1990; FENG etal., 2002; WANG etal., 2003). Many researchers have reported the correlations among desertification restoration, soil C s…  相似文献   

18.
Soil organic carbon is of great importance to terrestrial ecosystems.Studies on the amount and spatial distribution of soil organic carbon stock in various types of soil can help to better understand the role of soil in the global carbon cycle and provide a scientific basis for the assessment of the magnitude of carbon stored in a given area.Here we present estimates of soil organic carbon stock in soils in the upper reaches of the Yangtze River based on soil types as defined by Chinese Soil Taxonomy and recently compiled into a digital soil database.The results showed that the total soil organic carbon stock of the upper Yangtze River to a depth of 100 cm was 1.452×1013kg.The highest soil organic carbon stock was found in felty soils(2.419×1012kg),followed by dark brown soils(1.269×1012kg),and dark felty soils(1.139×1012kg).Chernozems and irrigation silting soils showed the lowest soil organic carbon stock,mainly due to the small total area of such soils.The soil organic carbon density of these major soil types ranged from 5.6 to 26.1 kg m-2.The average soil organic carbon density of the upper reaches of the Yangtze River was 16.4 kg m-2,which was higher than that of the national average.Soil organic carbon density indicated a distinct decreasing trend from west to east,which corresponds to the pattern of increasing temperature from cold to subtropical.  相似文献   

19.
The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiotemporal variability of SOC in the southwestern mountainous region of China. Thus, this study aimed to explore spatiotemporal changes of SOC in the cultivated soil layer of dry land in Mojiang County,Yunnan Province, China. Data were obtained from the second national soil survey(SNSS) of 1985 and soil tests for fertilizer application carried out by the Mojiang Agricultural Bureau in 2006. The ANOVA test was applied to determine any significant differences between the datasets, while semivariogram analysis was performed on geostatistics via an ordinary Kriging method in order to map spatial patterns of soil organic carbon density(SOCD). The results revealed that SOCD in the cultivated soil layer significantly decreased from 3.93 kg m~(-2) in 1985 to 2.89 kg m~(-2) in 2006, with a total soil organic carbon stock(SOCS) decrease of 41.54×10~4 t over the same period. SOCS levels fell most markedly in yellow-brown soil at a rate of51.52%, while an increase of 8.70% was found in the analysed latosol. Geostatistical analysis also showed that the recorded changes in SOCD between 1985 and2006 were spatially structured. The decreasing trend might be attributed to the combined action of intense cultivation, major crop residue removal without any protective tillage measures, unreasonable fertilization and natural climatic diversity inducing a large decrease in SOC in the studied cultivated dry land region of Mojiang County. Therefore, management measures such as protective tillage should be undertaken in order to enhance soil C sequestration.  相似文献   

20.
Bacteria are important regulators of carbon cycling in lakes and are central to sediment ecosystem processes. However, the sediment microbial communities and their respiratory responses to the lake wetland succession are poorly understood. In this study, we collected sediment samples from four different succession points(the Potamogeton lucens zone, the Scirpus tabernaemontani zone, the Scirpus triqueter zone, and the Juncus effusus zone) in the Caohai Wetland of the Guizhou Plateau(China). The bacterial communities at these succession points were studied using a high-throughput sequencing approach. The sediment microbial respiration(SR) was measured using static chambers in the field and basal respiration(BR) was determined in the laboratory. The results show that the dominant bacterial taxa in the sediment was Proteobacteria(34.7%), Chloroflexi(17.8%), Bacteroidetes(7.3%), Acidobacteria(6.6%), and Cyanobacteria(6.1%). Principal coordinate analysis showed that the microbial community structure differs significantly at different sampling points along the successional gradient, indicating that the bacterial community structure is sensitive to the lake wetland succession. Different hydrological regimes and soil characteristics such as NH_4~+-N, Fe~(2+), Mn~(2+), and sediment organic carbon(SOC) content may be important factors responsible for the differences in the sediment microbial characteristics of the different successional stages in the Caohai wetland. Additionally, it was found that the SR increased significantly from the P. lucens zone to the J. effusus zone, but BR had the opposite response. The shifts in the bacterial community structure along the successional gradient may be the main reason for the observed differences in sediment respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号