首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
持续引水灌溉改变了马兰黄土的结构, 降低了土体的抗剪强度, 导致黑方台地区黄土滑坡频繁发生, 严重影响着当地居民生命和财产安全。为了明析马兰黄土的渗透过程, 取黑方台马兰黄土为研究对象, 分别开展核磁共振(NMR)试验及扫描电镜(SEM)试验, 以解释此类黄土在不同初始含水率及不同干密度下的渗透特性及结构损伤微观特征。研究结果表明: 入渗速率与土体初始含水率呈负相关关系, 土体初始含水率越高, 其充水微小孔隙增加速率越慢, 充水中大孔隙增加速率越快; 入渗速率与土体干密度呈负相关关系, 且会率先形成高含水率区域, 土体干密度越大, 其充水微小孔隙增加越慢, 充水中大孔隙增加越快。入渗前后对比发现, 试样初始含水率越高, 微小孔隙增加比例越小, 颗粒间接触方式变化越不明显; 干密度越大的试样不同孔隙体积基本按等量变化, 接触面积明显减少, 形成更多的架空孔隙, 连通性较好, 具有较好的储水能力。入渗后试样原本的致密结构丧失, 颗粒破碎严重, 部分细长状颗粒向似椭圆状颗粒演化, 颗粒间接触方式变为点边接触, 粒间胶结作用遭受损伤破坏, 甚至部分团粒中颗粒分离、脱落, 使得土体强度丧失, 最终导致滑坡发生。研究结果可为黄土滑坡的防治提供依据。   相似文献   

2.
甘肃黑方台为灌溉诱发的静态液化型黄土滑坡发育地区,这类滑坡变形破坏具有明显的突发性,2015年黑方台东北侧的陈家8# 滑坡发生了3次滑动,在前方沟谷内形成了4.4×104 m3 黄土堆积体。通过野外调查和位移监测,获得了陈家8# 静态液化型黄土滑坡的完整变形曲线,其滑坡变形过程可分为前期稳定、匀速变形和加速变形3个阶段,位移具有明显的突发 性,滑前坡体底部饱水黄土的静态液化是诱发滑坡连续发生的原因,而滑坡弧形凹槽产生的汇水作用 是 使3次滑动呈渐进后退式的重要因素。有效的地表变形监测和宏观上地下水渗出规律的识别是预警这类滑坡的重要手段。   相似文献   

3.
20世纪80年代零通量面方法在我国应用中解决了“四水”转化研究中参数不确定性带来的问题,发现在降水入渗补给
地下水过程中土壤总水势梯度大于1.0cmH2O/cm,且逐渐降低,流入、流出被监测土层的水量相等时土壤总水势梯度趋近于1.0
cm H2O/cm。20世纪90年代,利用土壤水势与含水量之间量化关系,指导了农业节水灌溉,提出在灌溉过程中土壤水势梯度等
于1.0cm H2O/cm的时间持续愈长,表明过剩灌溉而浪费的水量愈多的认识。进入21世纪以来,水势理论较广泛地用来解决土
壤水盐分运移数值模拟与入渗模型中水文地质参数问题和降水入渗土壤水势运移微观机理研究,并发现表聚型、中聚型和底聚型
土壤盐分剖面的水动力学特征。通过土壤水动力场调控改变土壤水盐(养分或污染物)运移是未来重要研究方向。   相似文献   

4.
库岸滑坡受到库水升降作用影响, 内部渗透压力会产生周期性的变化。动态渗透压力会导致滑带结构与强度产生劣化, 进而影响滑坡整体稳定性。为揭示滑带在渗透作用下的结构演变特征, 通过室内渗流试验结合CT扫描技术获取了黄土坡滑坡滑带在不同渗流条件下的细观结构特征, 采用Avizo软件量化滑带细观结构参数, 定量分析了不同渗透条件下滑带结构的演变规律。结果表明, 滑带的渗透系数随渗流时长的增加而呈指数形式下降, 且水力梯度越大最终试样的渗透系数越小; 连续的CT重构图像显示渗流过程中部分黏土团聚体发生解体, 大孔隙被附近的细颗粒逐渐充填, 试样结构的宏观均一性增强; 统计数据表明滑带土的表观孔隙率由5%下降到了1%, 等效直径小于80 μm的孔隙占比随渗流时长的增加而增多, 而等效直径大于80 μm的孔隙占比随渗流时长的增加而减少。结果证明周期性渗透作用会影响滑带内孔隙结构的分布特征, 细观上表现为大孔隙被小颗粒充填, 导致渗流通道变得细长而弯曲, 孔隙的有效连通性被削弱, 宏观上表现为渗透系数随渗流时长的增加而降低。   相似文献   

5.
通过对灌溉水田间入渗机理的研究 ,确定灌溉水田间入渗系数 ,制定合理的灌溉定额与灌溉时间 ,对地下水资源评价以及节约用水 ,发展高效农业非常重要。 1985~ 1996年间 ,在河西走廊的张掖平原堡进行了针对包气带水分运移的专门研究试验工作 ,以此为基础 ,对灌溉水田间入渗补给地下水的机理进行探讨  相似文献   

6.
含优势渗流层边坡在降雨入渗的作用下其渗流场往往具有较高的不确定性,这给边坡的稳定性评价带来困难,通常采用概率的方法解决此类问题。针对含优势渗流层边坡降雨入渗下的可靠度问题,通过将应力分析中的点估计-有限元法引入到边坡渗流-稳定性分析,提出了考虑优势渗流层渗透特性不确定性的渗流概率分析和边坡可靠度分析方法;其次以广西某含碎石夹层土坡为例,分析了降雨入渗下碎石夹层的优势渗流效应及渗流概率,并基于此开展了该边坡降雨入渗下的可靠度分析。结果表明:①含优势渗流层边坡雨水沿优势渗流层渗入坡体内部的深度显著高于沿坡面渗入的深度;优势渗流层渗透特性的不确定性对渗流结果的影响较大,使得边坡稳定性分析具有较强的不确定性;②随着雨水入渗持时的增加,含优势渗流层边坡不同滑动面的失效概率总体呈现增加趋势,最危险滑动面的位置不断向边坡下部演化;依托工程滑动面位置的预测结果与工程实际吻合;③提出的概率分析方法适用于分析含优势渗流层边坡降雨入渗影响下的稳定性问题,而且具有计算量小的优势,可作这类边坡可靠度分析的一种新方法。   相似文献   

7.
降雨入渗对边坡稳定性具有重要影响。鉴于层状边坡在自然情况中广泛存在,因此,开展在降雨情况下的多层状边坡入渗模型及其稳定性研究具有重要意义。考虑各层土体的渗透性能差异,利用约束函数求得各层土体的有效渗透系数,并基于Green-Ampt模型建立层状边坡入渗模型。结合非饱和土强度经验公式,推导了考虑滑面抗剪强度动态变化的层状边坡稳定性方程。最后,对深圳某边坡在不同降雨强度和降雨历时下的稳定性系数进行了计算并对结果进行了分析。结果表明,当湿润锋未达到滑面处时,边坡稳定性系数与降雨历时和降雨强度呈线性关系。考虑边坡入渗能力,提出了降雨入渗临界时间概念。在任意降雨强度下,当降雨历时小于该时间时,边坡均不会失稳。本研究可以用于指导降雨情况下层状边坡的稳定性评价。   相似文献   

8.
黄土因饱水静态液化而发生突发性失稳破坏,易造成人员伤亡和财产损失。按照颗粒级配的不 同,中国黄土分为砂质、粉质和黏质黄土,不同区域的黄土具有不同的静态液化特性。利用 GDS三 轴 试 验 系 统,对陕西神木砂质黄土区(Q3 黄 土)、甘 肃黑方台粉质黄土区(Q3 黄土)和陕西泾阳黏质黄土区(Q2 黄土)原状饱和黄土进行了等向固结不排水三轴剪切(ICU)试验,研究了初始孔隙比和颗粒级配对原状黄土静态液化能力的影响。试 验 结 果 表 明:①3个地区的饱和原状土的应力-应变关系均为软化型,在中低围压下泾阳饱和原状黄土不发生液化,仅表现出弱软化现象;②中低围压下,初始孔隙比是影响原状黄土静态液化的主要因素,高围压下,初始孔隙比的影响逐渐减小,颗粒级配成为影响原状黄土静态液化的主要因素。   相似文献   

9.
孔隙特征作为反映黄土微观结构的重要特征之一, 直接影响黄土的水敏性、渗透性和强度等物理力学性质。为了研究水力耦合作用下黄土微观孔隙结构特征, 使用CT技术对天然原状、原状饱和与重塑黄土的初始结构以及不固结不排水剪切试验后的土体结构进行了扫描, 通过建立黄土三维结构模型, 分析了剪切试验前后孔隙结构的演变特征。结果表明: 饱和与重塑作用使天然原状黄土的大孔隙减少, 剪切作用使天然原状黄土和重塑黄土发生剪切破坏, 原状饱和黄土发生压缩破坏, 局部孔隙率增加。天然原状黄土与原状饱和黄土在剪切前后均表现为微孔和小孔数量较多, 其孔隙倾角主要分布在50°~90°之间, 解释了黄土亚稳态结构形成的主要原因。扰动作用使重塑黄土的孔隙尺寸分布均匀, 且重塑黄土与原状饱和黄土在水力作用下更易失稳屈服。揭示了黄土剪切变形破坏的微观结构主要表现为粒间胶结物的溶解、孔隙的坍塌与填充以及颗粒旋转、破碎和滑移。试验结果可为黄土剪切强度降低和湿陷机理研究提供依据。   相似文献   

10.
以甘肃省永靖县黑方台地区实地调查为基础,通过野外勘察黄土崩塌变形破坏特征及总结地质现象,并结合数据统计分析进行研究,得出黑方台地区崩塌地质灾害的分布特点,并且发现凸型和阶梯型坡面更容易发生崩塌灾害。崩塌发育因素可分为2方面,一方面是自然因素,包括地形地貌,地层构造和水文地质条件;另一方面是人为因素,主要是人类工程活动。天然条件下,斜坡在自重或其他因素作用下,后缘黄土垂直节理或裂隙受拉张作用力开始破裂,并向深部扩展,随着水流下渗,逐渐形成贯通面,潜在崩塌体中心外移,最终形成崩塌。黑方台地区崩塌灾害按崩塌物质成分分为黄土崩塌和基岩崩塌2类,按崩塌发生的主控因素分为自然型崩塌、人为型崩塌和人为—自然复合型崩塌3类,而大量的节理裂隙发育是发生崩塌灾害的内在因素。通过野外调查,根据动力形成机制分析,在自然因素和人为因素影响下,将黑方台地区崩塌形成方式分为4种,并阐述其发育机制。  相似文献   

11.
The initiation mechanism of debris flow is regarded as the key step in understanding the debris-flow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particle accumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.  相似文献   

12.
The three-dimensional seepage simulation test device for siltation dam foundation soil is a multifunctional penetration instrument which is designed for the simulation of infiltration clogging,seepage damage,and dam seepage and so on. This device is different from the traditional instruments for the rock and soil permeability. In order to verify the practicability of the device,the authors collected the soil samples for laboratory penetration test,observed the seepage damage phenomenon,and obtained the dynamic change curve of permeability coefficient and isopotential map of water pressure. At the same time,the Geostudio finite element software is used to simulate the steady seepage of the test device. By contrast of the isopotential maps between simulation and actual water pressures,it is found that they are approximately the same. It is proved that the test data of the device is scientific and reliable,reaching the results of the test and design purposes. The instrument can be used in many aspects of experimental study on soil seepage.  相似文献   

13.
The Heifangtai platform in Northwest China is famous for irrigation-induced loess landslides. This study conducted a centrifuge model test with reference to an irrigation-induced loess landslide that occurred in Heifangtai in 2011. The loess slope model was constructed by whittling a cubic loess block obtaining from the landslide site. The irrigation water was simulated by applying continuous infiltration from back of the slope. The deformation, earth pressure, and pore pressure were investigated during test by a series of transducers. For this particular study, the results showed that the failure processes were characterized by retrogressive landslides and cracks. The time dependent reductions of cohesion and internal friction angle at basal layer with increasing pore-water pressure were responsible for these failures. The foot part of slope is very important for slope instability and hazard prevention in the study area, where concentration of earth pressure and generation of high pore-water pressures would form before failures. The measurements of earth pressure and pore-water pressure might be effective for early warning in the study area.  相似文献   

14.
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as ‘sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that ‘sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of ‘sediment pump' are determined as hydrodynamics(wave energy), degree of consolidation, index of bioturbation(permeability) and content of fine-grained materials(sedimentary age). This new perspective of ‘sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.  相似文献   

15.
In coastal areas, excessive exploitation of groundwater causes seawater intrusion. In artificial recharge of aquifer remediation process, the replacement of saltwater and freshwater with each other causes colloid release, and permeability also decreases. In this paper, the aquifer samples containing minimal clay mineral(mainly illite) in Dagu River aquifer were used. Adopting horizontal column experiments, we studied the influences of seepage velocity and ionic strength on particle release, as well as the relationship between them. In the column experiments, the Critical Salt Concentration(CSC) of the Dagu River aquifer was determined as 0.05 mol L~(-1) approximately. This result was basically consistent with the DLVO theoretical calculation. For the constant seepage velocity, the salinity descending rate and partical release were slower, and the peak of particle concentration was lower. However, the total amount of released particles was almost constant at different salinity descending rate. For constant salinity descending rates, the peak of particle concentration decreased as seepage velocity increased, but the total amount of released particles rose up. The experiments also indicated the existence of a critical seepage velocity, which dropped with the decrease of salt concentration. When the concentration of Na Cl solution decreased from 0.17 mol L~(-1) to 0.06 mol L~(-1), the critical seepage velocity decreased from 3 cm min~(-1)to 2.5 cm min~(-1), which is consistent to the results predicted by DLVO theory.  相似文献   

16.
Seepage-induced fines migration under rainfall infiltration is a main cause leading to shallow failures in loose colluvial slopes. To describe the full process of fines migration within unsaturated soils during rainfall infiltration and the associated hydro-mechanical behaviors, a seepage-erosion-deformation coupled formulation is proposed in this paper. The governing equations proposed are implemented into a finite element code and used to investigate the influences of skeleton deformation on the rainfall infiltration process through unsaturated soil columns. The numerical results were presented in detail for a better understanding of the rainfall-induced fines migration process within unsaturated soils. Further, the obtained results are integrated into an infinite slope model for slope stability analysis. The results show that, the skeleton deformation will affect the rainfall infiltration rate and hence the timing of slope failures; meanwhile their influences are more evident if the fines deposition process is taken into account. Moreover, the slope stability could be reduced gradually due to the soil strength loss along with loss of fine particles. Therefore, particular attentions should be paid to analyzing the stability of soil slopes susceptible to internal erosion.  相似文献   

17.
Clogging effect, as a new concept in geological engineering, is a phenomenon of permeability decreasing under seeping in reservoir dam foundation of the alluvial and diluvial deposits with deep and thick layer, coarse particle and high permeability in mountains-gully rivers of Tibetan Plateau. A clogging infiltration instrument has been designed successfully and a series of simulation tests have been done. Based on large amounts of data, it is confirmed that the existence of the clogging effect and the law of infiltration clogging is found out. Three indexes are proposed such as "optimal size of particle", "optimal size range of particle" and "characteristic pore", which are closely related with effect of infiltration clogging. The concept and results can offer a new idea to solve problems on anti-seepage of dam foundation in mountains-gully rivers environment and to study artificial clogging, meanwhile supplement of the concept of seepage deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号