首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北极海冰范围时空变化及其与海温气温间的数值分析   总被引:1,自引:0,他引:1  
本文利用美国国家冰雪中心提供的1989-2014年海冰范围资料,分析了北极海冰范围的年际变化和季节变化规律。分析发现,北极海冰范围呈减少趋势,每年减小5.91×104 km2,夏季减少趋势显著,冬季减少趋势弱。北极海冰范围显现相对稳定的季节变化规律,海冰的结冰和融化主要发生在各个边缘海,夏季期间的海冰具有融化快、冻结快的特征。结合海温、气温数据,进行北极海冰范围与海温、气温间的数值分析,结果表明北极海冰范围变化通过影响北极海温变化进而影响北极气温变化。海冰范围的季节变化滞后于海温和气温的季节变化。基于北极考察走航海温气温数据,进行楚科奇海海冰范围线与海温气温间的数值分析,发现楚科奇海海冰范围线所在区域的海温、气温与纬度高低、离陆地远近有关。  相似文献   

2.
Continuous observation of sea water temperature and current was made at Wenchang Station (19°35′N, 112°E) in 2005. The data collected indicate vigorous internal waves of both short periods and tidal and near-inertial periods. The temperature and current time series during 18-30 September were examined to describe the upper ocean internal wave field response to Typhoon Damrey (0518). The strong wind associated with the typhoon, which passed over the sea area about 45 km south of Wenchang Sta- tion on 25 September, deepened the mixed layer depth remarkably. It decreased the mixed layer temperature while increasing the deep layer temperature, and intensified the near-inertial and high-frequency fluctuations of temperature and current. Power spectra of temperature and current time series indicate significant deviations from those obtained by using the deep ocean internal wave models characterized by a power law. The frequency spectra were dominated by three energetic bands: around the inertial frequency (7.75× 10-6 Hz), tidal frequencies (1.010-25 to 2.4×10-5 Hz), and between 1.4×10-4 and 8.3 × 10-4 Hz. Dividing the field data into three phases (before, during and after the typhoon), we found that the typhoon enhanced the kinetic energy in nearly all the frequency bands, es- pecially in the surface water. The passage of Damrey made a major contribution to the horizontal kinetic energy of the total surface current variances. The vertical energy density distribution, with its peak value at the surface, was an indication that the energy in- jected by the strong wind into the surface current could penetrate downward to the thermocline.  相似文献   

3.
Sea ice is a sensitive indicator of climate change and an important component of climate system models. The Los Alamos Sea Ice Model 5.0(CICE5.0) was introduced to the Beijing Climate Center Climate System Model(BCC_CSM) as a new alternative to the Sea Ice Simulator(SIS). The principal purpose of this paper is to analyze the impacts of these two sea ice components on simulations of basic Arctic sea ice, atmosphere, and ocean states. Two sets of experiments were conducted with the same configurations except for the sea ice component used, i.e., SIS and CICE. The distributions of sea ice concentration and thickness reproduced by the CICE simulations in both March and September were closer to actual observations than those reproduced by SIS simulations, which presented a very thin sea ice cover in September. Changes in sea ice conditions also brought about corresponding modifications to the atmosphere and ocean circulation. CICE simulations showed higher agreement with the reference datasets than did SIS simulations for surface air temperature, sea level pressure, and sea surface temperature in most parts of the Arctic Ocean. More importantly, compared with simulations with SIS, BCC_CSM with CICE revealed stronger Atlantic meridional overturning circulation(AMOC), which is more consistent with actual observations. Thus, CICE shows better performance than SIS in BCC_ CSM. However, both components demonstrate a number of common weaknesses, such as overestimation of the sea ice cover in winter, especially in the Nordic Sea and the Sea of Okhotsk. Additional studies and improvements are necessary to develop these components further.  相似文献   

4.
The variation in Arctic sea ice has significant implications for climate change due to its huge influence on the global heat balance. In this study, we quantified the spatio-temporal variation of Arctic sea ice distribution using Advanced Microwave Scanning Radiometer(AMSR-E) sea-ice concentration data from 2003 to 2013. The results found that, over this period, the extent of sea ice reached a maximum in 2004, whereas in 2007 and 2012, the extent of summer sea ice was at a minimum. It declined continuously from 2010 to 2012, falling to its lowest level since 2003. Sea-ice extent fell continuously each summer between July and mid-September before increasing again. It decreased most rapidly in September, and the summer reduction rate was 1.35 × 10~5 km~2/yr, twice as fast as the rate between 1979 and 2006, and slightly slower than from 2002 to 2011. Area with 90% sea-ice concentration decreased by 1.32 × 10~7 km~2/yr, while locations with 50% sea-ice concentration, which were mainly covered by perennial ice, were near the North Pole, the Beaufort Sea, and the Queen Elizabeth Islands. Perennial Arctic ice decreased at a rate of 1.54 × 10~5 km~2 annually over the past 11 years.  相似文献   

5.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   

6.
A regional sea ice-ocean coupled model for the Arctic Ocean was developed, based on the MITgcm ocean circulation model and classical Hibler79 type two categorythermodynamics-dynamics sea ice model. The sea ice dynamics and thermodynamicswere considered based on Viscous-Plastic (VP) and Winton three-layer models, respectively. A detailed configuration of coupled model has been introduced. Special attention has been paid to the model grid setup, subgrid paramerization, ice-ocean coupling and open boundary treatment. The coupled model was then applied and two test run examples were presented. The first model run was a climatology simulation with 10 years (1992?002) averaged NCAR/NCEP reanalysis data as atmospheric forcing. The second model run was a seasonal simulation for the period of 1992?007. The atmospheric forcing was daily NCAR/NCEP reanalysis. The climatology simulation captured the general pattern of the sea ice thickness distribution of the Arctic, i.e., the thickest sea ice is situated around the CanadaArchipelago and the north coast of the Greenland. For the second model run, themodeled September Sea ice extent anomaly from 1992?007 was highly correlated with the observations, with a linear correlation coefficient of 0.88. Theminimum of the Arctic sea ice area in the September of 2007 was unprecedented. The modeled sea ice area and extent for this minimum was overestimated relative to the observations. However, it captured the general pattern of the sea ice retreat.  相似文献   

7.
A cruise was conducted from late August to early September 2004 with the intention of obtaining an interdisciplinary understanding of the Yangtze River Estuary including the biological, chemical and physical subjects. Water sample analysis indicated that total phytoplankton species richness was 137. Of them 81 were found in Bacillariophyta and 48 in Pyrrophyta, accounting for 59.1% and 35.0% respectively. The average cell abundance of surface water samples was 8.8×104 cells L-1, with the maximum, 102.9×104 cells L-1, encountered in the area (31.75°N, 122.33°E) and the minimum, 0.2×104 cells L-1, in (30.75°N, 122.17°E). The dominant species at most stations were Skeletonema costatum and Proboscia alata f. gracillima with the dominance of 0.35 and 0.27. Vertical distribution analysis indicated that obvious stratification of cell abundance and dominant species was found in the representative stations of 5, 18 and 33. Shannon-Wiener index and evenness of phytoplankton assemblage presented negative correlation with the cell abundance, with the optimum appearing in (30.75°N, 122.67°E). According to the PCA analysis of the environmental variables, elevated nutrients of nitrate, silicate and phosphate through river discharge were mainly responsible for the phytoplankton bloom in this area.  相似文献   

8.
Dong  Chunming  Luo  Xiaofan  Nie  Hongtao  Zhao  Wei  Wei  Hao 《中国海洋湖沼学报》2023,41(1):1-16

Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s. The prediction of sea ice is highly important, but accurate simulation of sea ice variations remains highly challenging. For improving model performance, sensitivity experiments were conducted using the coupled ocean and sea ice model (NEMO-LIM), and the simulation results were compared against satellite observations. Moreover, the contribution ratios of dynamic and thermodynamic processes to sea ice variations were analyzed. The results show that the performance of the model in reconstructing the spatial distribution of Arctic sea ice is highly sensitive to ice strength decay constant (Crhg). By reducing the Crhg constant, the sea ice compressive strength increases, leading to improved simulated sea ice states. The contribution of thermodynamic processes to sea ice melting was reduced due to less deformation and fracture of sea ice with increased compressive strength. Meanwhile, dynamic processes constrained more sea ice to the central Arctic Ocean and contributed to the increases in ice concentration, reducing the simulation bias in the central Arctic Ocean in summer. The root mean square error (RMSE) between modeled and the CryoSat-2/SMOS satellite observed ice thickness was reduced in the compressive strength-enhanced model solution. The ice thickness, especially of multiyear thick ice, was also reduced and matched with the satellite observation better in the freezing season. These provide an essential foundation on exploring the response of the marine ecosystem and biogeochemical cycling to sea ice changes.

  相似文献   

9.
Partial pressure of CO2 (pCO2) was investigated in the Changjiang (Yangtze River) Estuary, Hangzhou Bay and their adjacent areas during a cruise in August 2004, China. The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago. The pCO2 varied from 168 to 2 264 μatm, which fell in the low range compared with those of other estuaries in the world. The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m^-2 d^-1 in average of 24.4 ± 16.5 mmol m^-2 d^-1. Although the area studied was estimated only 2 × 10^4 km^2, it emitted (5.9 ± 4.0) × 10^3 tons of carbon to the atmosphere every day. The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.  相似文献   

10.
Estimates of near surface layer parameters over 78°N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22-September 3,2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2,among which the main part transported into atmosphere in term of sensible heat and latent heat,which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16×10-3 in the near neutral layer,which is a little smaller than that obtained over 75°N drifting ice.However,to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999,it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes,concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.  相似文献   

11.
Various satellite data, JRA-25 (Japan reanalysis of 25 years) reanalyzed data and WRF (Weather Research Forecast) model are used to investigate the in situ effect of the ESKF (East China Sea Kuroshio Front) on the MABL (marine atmospheric boundary layer). The intensity of the ESKF is most robust from January to April in its annual cycle. The local strong surface northerly/northeasterly winds are observed right over the ESKF in January and in April and the wind speeds decrease upward in the MABL. The thermal wind effect that is derived from the baroclinic MABL forced by the strong SST gradient contributes to the strong surface winds to a large degree. The convergence zone existing along the warm flank of the ESKF is stronger in April than in January corresponding to the steeper SST (sea surface temperature) gradient. The collocations of the cloud cover maximum and precipitation maximum are basically consistent with the convergence zone of the wind field. The clouds develop higher (lower) in the warm (cold) flank of the ESKF due to the less (more) stable stratification in the MABL. The lowest clouds are observed in April on the cold flank of the ESKF and over the Yellow Sea due to the existence of the pronounced temperature inversion. The numerical experiments with smoothed SST are consistent with the results from the ovservations.  相似文献   

12.
The sea level derived from TOPEX/Poseidon(T/P) altimetry data shows prominent long term trend and inter-annual variability.The global mean sea level rising rate during 1993-2003 was 2.9 mm a-1.The T/P sea level trend maps the geographical variability.In the Northern Hemisphere(15°-64°N),the sea level rise is very fast at the mid-latitude(20°-40°N) but much slower at the high-latitude,for example,only 0.5 mm a-1 in the latitude band 40°-50°N.In the Southern Hemisphere,the sea level shows high rising rate both in mid-latitude and high-latitude areas,for example,5.1 mm a-1 in the band 40°-50°S.The global thermosteric sea level(TSL) derived from Ishii temperature data was rising during 1993-2003 at a rate of 1.2 mm a-1 and accounted for more than 40% of the global T/P sea level rise.The contributions of the TSL distribution are not spatially uniform;for instance,the percentage is 67% for the Northern Hemisphere and only 29% for the Southern Hemisphere(15°-64°S) and the maximum thermosteric contribution appears in the Pacific Ocean,which contributes more than 60% of the global TSL.The sea level change trend in tropical ocean is mainly caused by the thermosteric effect,which is different from the case of seasonal variability in this area.The TSL variability dominates the T/P sea level rise in the North Atlantic,but it is small in other areas,and shows negative trend at the high-latitude area(40°-60°N,and 50°-60°S).The global TSL during 1945-2003 showed obvious rising trend with the rate of about 0.3 mm a-1 and striking inter-annual and decadal variability with period of 20 years.In the past 60 years,the Atlantic TSL was rising continuously and remarkably,contributing 38% to the global TSL rising.The TSL in the Pacific and Indian Ocean rose with significant inter-annual and decadal variability.The first EOF mode of the global TSL from Ishii temperature data was the ENSO mode in which the time series of the first mode showed steady rising trend.Among the three oceans,the first mode of the Pacific TSL presented the ENSO mode;there was relatively steady rising trend in the Atlantic Ocean,and no dominant mode in the Indian Ocean.  相似文献   

13.
This paper established a geophysical retrieval algorithm for sea surface wind vector, sea surface temperature, columnar atmospheric water vapor, and columnar cloud liquid water from WindSat, using the measured brightness temperatures and a matchup database. To retrieve the wind vector, a chaotic particle swarm approach was used to determine a set of possible wind vector solutions which minimize the difference between the forward model and the WindSat observations. An adjusted circular median filtering function was adopted to remove wind direction ambiguity. The validation of the wind speed, wind direction, sea surface temperature, columnar atmospheric water vapor, and columnar liquid cloud water indicates that this algorithm is feasible and reasonable and can be used to retrieve these atmospheric and oceanic parameters. Compared with moored buoy data, the RMS errors for wind speed and sea surface temperature were 0.92 m s~(-1) and 0.88℃, respectively. The RMS errors for columnar atmospheric water vapor and columnar liquid cloud water were 0.62 mm and 0.01 mm, respectively, compared with F17 SSMIS results. In addition, monthly average results indicated that these parameters are in good agreement with AMSR-E results. Wind direction retrieval was studied under various wind speed conditions and validated by comparing to the Quik SCAT measurements, and the RMS error was 13.3?. This paper offers a new approach to the study of ocean wind vector retrieval using a polarimetric microwave radiometer.  相似文献   

14.
Clouds can influence climate through many complex interactions within the hydrological cycle. Due to the important effects of cloud cover on climate, it is essential to study its variability over certain geographical areas. This study provides a spatial and temporal distribution of sky conditions, cloudy, partly cloudy, and clear days, in Iran. Cloud fraction parameters were calculated based on the cloud product(collection 6_L2) obtained from the Moderate Resolution Imaging Spectroradiometer(MODIS) sensors on board the Terra(MOD06) and Aqua(MYD06) satellites. The cloud products were collected daily from January 1, 2003 to December 31, 2014(12 years) with a spatial resolution of 5 km × 5 km. First, the cloud fraction data were converted into a regular geographic coordinate network over Iran. Then, the estimations from both sensors were analyzed. Results revealed that the maximum annual frequency of cloudy days occurs along the southern shores of the Caspian Sea, while the minimum annual frequency occurs in southeast Iran. On average, the annual number of cloudy and clear-sky days was 88 and 256 d from MODIS Terra, as compared to 96 and 244 d from MODIS Aqua. Generally, cloudy and partly cloudy days decrease from north to south, and MODIS Aqua overestimates the cloudy and partly cloudy days compared to MODIS Terra.  相似文献   

15.
丽江市冰雹天气的红外云图和雷达回波特征分析   总被引:1,自引:0,他引:1  
利用丽江市2006—2008年3—9月的25次降雹资料,分析了丽江市冰雹时空分布特征和大气环流特征。选取2008年3月22日、6月9日和9月24日发生在丽江3次冰雹天气过程的红外云图和雷达回波进行分析,结果表明:春季南支槽冰雹天气云层厚度小(类似层状云降水)且TBB值较高,冰雹云雷达回波强度弱,高度低;夏秋季节在典型环流背景下,强对流冰雹云的TBB值最低、最集中、附近强对流天气单体活动最剧烈,在雷达回波上表现为较大区域内出现有组织、相对孤立的点状回波,这些点状回波发展较快、生命史较长,通过雷达加密监测,可及时发现对流天气并及时预警。  相似文献   

16.
Status of the Recent Declining of Arctic Sea Ice Studies   总被引:2,自引:0,他引:2  
In the past 30 years, a large-scale change occurred in the Arctic climatic system, which had never been observed before 1980s. At the same time, the Arctic sea ice experienced a special evolution with more and more rapidly dramatic declining. In this circumstance, the Arctic sea ice became a new focus of the Arctic research. The recent advancements about abrupt change of the Arctic sea ice are reviewed in this paper .The previous analyses have demonstrated the accelerated declining trend of Arctic sea ice extent in the past 30 years, based on in-situ and satellite-based observations of atmosphere, as well as the results of global and regional climate simulations. Especially in summer, the rate of decrease for the ice extents was above 10% per decade. In present paper, the evolution characteristics of the arctic sea ice and its possible cause are discussed in three aspects, i.e. the sea ice physical properties, the interaction process of sea ice, ocean and atmosphere and its response and feedback mechanism to global and arctic climate system.  相似文献   

17.
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961–2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is −4.8 °C /km and the latitudinal effect is −0.87 °C /olatitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3°C /km and the effect of latitude is only −0.28°C /olatitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is −5.0°C /km, while the effect of latitude is −1.51°C /olatitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent by differences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13°C /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33° latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0°C /km on the rate of warming over a hundred-year period.  相似文献   

18.
Sea ice is a quite sensitive indicator in response to regional and global climate changes. Based on monthly mean PanArctic Ice Ocean Modeling and Assimilation System(PIOMAS) sea ice thickness fields, we computed the conductive heat flux(CHF) in the Arctic Ocean in the four winter months(November–February) for a long period of 36 years(1979–2014). The calculated results for each month manifest the increasing extension of the domain with high CHF values since 1979 till 2014. In 2014, regions of roughly 90% of the central Arctic Ocean have been dominated by the CHF values larger than 18 Wm~(-2)(November–December) and 12 Wm~(-2)(January–February), especially significant in the shelf seas around the Arctic Ocean. Moreover, the population distribution frequency(PDF) patterns of the CHF with time show gradually peak shifting toward increased CHF values. The spatiotemporal patterns in terms of the trends in sea ice thickness and other three geophysical parameters, surface air temperature(SAT), sea ice thickness(SIT), and CHF, are well coupled. This suggests that the thinner sea ice cover preconditions for the more oceanic heat loss into atmosphere(as suggested by increased CHF values), which probably contributes to warmer atmosphere which in turn in the long run will cause thinner ice cover. This represents a positive feedback mechanism of which the overall effects would amplify the Arctic climate changes.  相似文献   

19.
The rate of evaporation of seawater droplets in the air-sea boundary layer can be estimated by its salinity change compared to the sea surface salinity. A micro-chemical method based on Farlow (1954) is developed for quantitative determination of the salinity of an individual droplet without the error due to further evaporation after sampling. A halide ion-sensitive sampling surface is prepared by colloidally dispersing brown silver dichromate into the gelatin layer of a commercially available film. The reaction of soluble chlorides with the silver salt leaves a clear white halo with diametera on the brown film to reveal the volume of the droplet. After the film is developed in a water vapor saturated atmosphere, the halo grows to diameterd with the original as the embryo to indicate the quantity of chloride ion involved in the action. The ratio ofd/(a1.5) is a function of the salinity of the droplet. The method can be used to determine the salinity of seawater droplet of 10−6 to 10−10 gram. Details of the principle and preparation, and calibration of the reagent film, are presented. Contribution No. 1708 from the Institute of Oceanology, Academia Sinica. The research was supported by the Chinese National Natural Science Foundation. The paper was prepared while the author was a visiting scholar at the Department of Atmospheric Sciences, AK-40, University of Washington, Seattle, Washington 98195, USA (from May to July, 1989), and Scripps Institution of Oceanography, A-030, University of California, La Jolla, California 92093, USA (from September, 1989 to February, 1990).  相似文献   

20.
Bi  Haibo  Liang  Yu  Wang  Yunhe  Liang  Xi  Zhang  Zehua  Du  Tingqin  Yu  Qinglong  Huang  Jue  Kong  Mei  Huang  Haijun 《中国海洋湖沼学报》2020,38(4):962-984
In comparison with seasonal sea ice(first-year ice,FY ice),multiyear(MY) sea ice is thicker and has more opportunity to survive through the summer melting seasons.Therefore,the variability of wintertime MY ice plays a vital role in modulating the variations in the Arctic sea ice minimum extent during the following summer.As a response,the ice-ocean-atmosphere interactions may be significantly affected by the variations in the MY ice cover.Satellite observations are characterized by their capability to capture the spatiotemporal changes of Arctic sea ice.During the recent decades,many active and passive sensors onboard a variety of satellites(QuikSCAT,ASCAT,SSMIS,ICESat,CryoSat-2,etc.) have been used to monitor the dramatic loss of Arctic MY ice.The main objective of this study is to outline the advances and remaining challenges in monitoring the MY ice changes through the utilization of multiple satellite observations.We summarize the primary satellite data sources that are used to identify MY ice.The methodology to classify MY ice and derive MY ice concentration is reviewed.The interannual variability and trends in the MY ice time series in terms of coverage,thickness,volume,and age composition are evaluated.The potential causes associated with the observed Arctic MY ice loss are outlined,which are primarily related to the export and melting mechanisms.In addition,the causes to the MY ice depletion from the perspective of the oceanic water inflow from Pacific and Atlantic Oceans and the water vapor intrusion,as well as the roles of synoptic weather,are analyzed.The remaining challenges and possible upcoming research subjects in detecting the rapidly changing Arctic MY ice using the combined application of multisource remote sensing techniques are discussed.Moreover,some suggestions for the future application of satellite observations on the investigations of MY ice cover changes are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号