首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

2.
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model.  相似文献   

3.
Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models. The turbulence associated with non-breaking waves is widely believed to effectively solve this problem. In many studies, non-breaking surface wave processes are attributed to the effects of Langmuir circulations(LCs). In the present work, the influences of LCs on the upper-ocean thermal structure are examined by using one-and three-dimensional ocean circulation, as well as climate, models. The results indicated that the effect of vertical mixing enhanced by LCs is limited to the upper ocean. The models evaluated, including those considering LC effects alone and the combined effects of LCs and wave breaking, failed to produce a reasonable summertime thermocline, resulting in a large cold bias in the subsurface layer. Therefore, while they can slightly reduce the biases of mixed layer depths and sea surface temperatures in models, LCs are insufficient to solve the problem of insufficient vertical mixing. Moreover, restriction of non-breaking surface wave-induced processes in LCs may be questionable.  相似文献   

4.
Effect of wave-induced Stokes drift on the dynamics of ocean mixed layer   总被引:1,自引:0,他引:1  
The wave-forcing ’Coriolis-Stokes forcing’ and ’Stokes-vortex force’ induced by Stokes drift affect the upper ocean jointly.To study the effect of the wave-induced Stokes drift on the dynamics of the ocean mixed layer,a new three-dimensional(3D) numerical model is derived using the primitive basic equations and Eulerian wave averaging.The Princeton Ocean Model(POM),a 3D primitive equation ocean model is used with the upper wave-averaged basic equations.The global ocean circulation is simulated using the POM model,and the Stokes drift is evaluated based on the wave data generated by WAVEWATCH III.We compared simulations with and without the Stokes drift.The results show that the magnitude of the Stokes drift is comparable with the Eulerian mean current.Including the Stokes drift in the ocean model affects both the Eulerian current and the Lagranian drift and causes the vertical mixing coefficients to increase.  相似文献   

5.
The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of the SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.  相似文献   

6.
ImODUcnONThedeepequatorialoceanhasobvioussignilicantflowapparentlycarryinghacelsa1ongandacrosstheequator(WissCtal.,l985).RmtfloatmsurementSshoWedthattheflowishigh1yvariable(Richardsonetal.,l993).ThomPsonandKawase(l993)pro-posedthatthelargeinstantaneousandfloatvelocitiesasWellasthevariabilitysuggestthatthetracersignaIsreflCCtreCtificationoftimedependentmotionsandniinginsteadofrneanEulerianflow.TheresultSoftheirstudyonthegenerationofmeancurrentSbyperi-odicfordngintheequatorialoceaninasir…  相似文献   

7.
The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now-and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5–6 December, 2013(German name ‘Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the Eur Otop(2016) approach.  相似文献   

8.
There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.  相似文献   

9.
The bank slopes in hydro-fluctuation areas of reservoirs or lakes suffer from severe erosion due to an absence of protection. Waves are one of the important external forces that cause bank erosion and slope failures. However, the processes and quantified impacts of wave-induced erosion on slopes remain unclear under different water level-fluctuation conditions. This paper focuses on the characteristics of wave-induced slope erosion under three conditions: water level dropping(WLD), fixed(WLF) and rising(WLR). A steel tank with glass pane was used to simulate the wave-induced slope erosion in the three treatments. The slope elevation data were collected by using the method of the pin meter for every 15 minutes from the beginning to the end, a total of 5 times during all treatments. These data were processed by using software(SURFER 9.0) to get the slope micro-topography and the erosion volume. Then the temporal and spatial change of slope erosion was analysed according to the erosion amount or erosion rate calculated based on bulk density of slope soil. The results demonstrated that the soil erosion rates for different water level changing treatments are in the following order: WLR>WLD>WLF. For the erosion spatial variation, the middle part of the slope was the major source of sediment in the WLD. The upper part of the slope was the major source of the sediment for the other two treatments. Compared with the standard deviation(SD), the coefficient of variation(CV) based on the SD is more representative of variations in the soil surface roughness(SSR). Furthermore, the good fit between the SSR and soil erosion rate have the potential to be used to predict soil erosion. Above all, the injection angle of the wave determined the rate of erosion to some extent, and the fall-back flow of the wave could also influence the extent of erosion, deposition, and bank morphology. It is vital to choose the appropriate index(SD or CV) in the three water levels to improve the prediction accuracy. This paper could provide scientific knowledge to manage reservoirs or river banks.  相似文献   

10.
Bi  Congcong  Yao  Zhigang  Bao  Xianwen  Zhang  Cong  Ding  Yang  Liu  Xihui  Guo  Junru 《中国海洋湖沼学报》2021,39(1):64-78
The vertical mixing parameterization scheme,by providing the effects of some explicitly missed physical processes and more importantly closing the energy budgets,is a critical model component and therefore imposes significant impacts on model performance.The Yellow Sea Cold Water Mass(YSCWM),as the most striking and unique phenomenon in the Yellow Sea during summer,is dramatically affected by vertical mixing process during its each stage and therefore seriously sensitive to the proper choice of parameterization scheme.In this paper,a hindcast of YSCWM in winter of 2006 was implemented by using the Regional Ocean Modeling System(ROMS).Three popular parameterization scheme s,including the level2.5 Mellor-Yamada clo sure(M-Y 2.5),Generic Length Scale clo sure(GL S) and K-Profile Parameterization(KPP),were tested and compared with each other by conducting a series of sensitivity model experiments.The influence of different parameterization scheme s on modeling the YSCWM was then carefully examined and assessed based on these model experiments.Although reasonable thermal structure and its seasonal variation were well reproduced by all schemes,considerable differences could still be found among all experiments.A warmer and spatially smaller simulation of YSCWM,with very strong the rmocline,appeared in M-Y 2.5 experiment,while a spatially larger YSCWM with shallow mixed layer was found in GLS and KPP schemes.Among all the experiments,the discrepancy,indicated by core temperature,appeared since spring,and grew gradually by the end of November.Additional experiments also confirmed that the increase of background diffusivity could effectively weaken the YSCWM,in either strength or coverage.Surface wave,another contributor in upper layer,was found responsible for the shrinkage of YSCWM coverage.The treatment of wave effect as an additional turbulence production term in progno stic equation was shown to be more superior to the strategy of directly increasing diffusivity for a coastal region.  相似文献   

11.
The transport flux residue of surface waves plays an important role in a variety of ocean phenomena, for example, the change in sea surface temperature(SST) and upper mixed layer profile that were studied in a series of recent papers. In the previous studies, its effect was discussed rigorously and fragmented based on numerical modeling. Here we propose a relatively comprehensive and simplified exposition of the wave transport flux residue, and focus on its influence under typhoon conditions with strong background current. An analogue Reynolds Number is presented for tentative comparison with wave-generated turbulence mixing, especially in the coastal area. Numerical results indicate that both overwhelming dynamical mixing processes can remarkably change the coastal environment, and should not be ignored consciously for further marine hazards assessment.  相似文献   

12.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

13.
A flume experiment was conducted to investigate the restratification of liquefied sediment strata under a wave load with the focus on the interbedded strata of coarse and fine sediments formed in estuarine and coastal areas. The aim of this research was to study the characteristics and processes of liquefied sediment strata in terms of wave-induced liquefaction. In the experiment, the bottom bed liquefied under the wave action and the liquefied soil moved in the same period with the overlying waves, and the track of the soil particles in the liquefied soil was an ellipse. The sand layer consisting of coarse particles in the upper part, settled into the lower silt layer. The sinking of coarse particles and upward migration of the fine particles of the lower layer induced by liquefied sediment fluctuations are the likely reasons for sedimentation of the sand layer in liquefied silt.  相似文献   

14.
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.  相似文献   

15.
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe (Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads, in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated, then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer, while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors, respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.  相似文献   

16.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

17.
INTRODUCTIONJiaozhouBayisashallowsemi closedbaywithtotalareaofabout 40 0km2 andaveragewaterdepthof7m .Themaximumwaterdepthisover 5 0matthecenterofthestraitconnectingtotheYellowSea.Thisstraitcenterwateriscalledbaymouthwater,thewaterinthenorthernpartofthestrai…  相似文献   

18.
The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data (ERA-40 data) and the Simple Ocean Data Assimilation (SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.  相似文献   

19.
A P-vector method was optimized using variational data assimilation technique, with which the vertical structures and seasonal variations of zonal velocities and transports were investigated. The results showed that westward and eastward flowes occur in the Luzon Strait in the same period in a year. How ever thenet volume transport is westward. In the upper level (0m -- -500m), the westward flow exits in the middle and south of the Luzon Strait, and the eastward flow exits in the north. There are two centers of westward flow and one center of eastward flow. In the middle of the Luzon Strait, westward and eastward flowes appear alternately in vertical direction. The westward flow strengthens in winter and weakens in summer. The net volume transport is strong in winter (5.53 Sv) but weak in summer (0.29 Sv). Except in summer, the volume transport in the upper level accounts for more than half of the total volume transport (0m -- bottom). In summer, the net volum etransport in the upper level is eastward (1.01 Sv), but westward underneath.  相似文献   

20.
MODUrnONTheS0uthChinaSea(SCS)isabophalrnarginalbasinwhereEastAsiamonsoonsprevail.0bviousadjustInentSoftheupperocanoccurduetOthealtematingsurnxneandwintermonsoons.ThemostboohantaspchoflargeanlecurmtSintheSesaretheupperoonnicresponsetothemonsoons(Dale,l956).MostpreviousmrehesfocusedondiagnostiesandmodelingofsuffocecurmtS.Wwti(l96l)plotalsurfacentsbasedonshipdriflsintheNAGAReportNo.2anddescritaltheperiodicallysdri-annualreversingofwindsandrtinthisarea.Xuetal.(l982)calculatalthedy-naAn…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号