首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OCCAM global ocean model results were applied to calculate the monthly water transport through 7 straits around the East China Sea(ECS)and the South china Sea(SCS).Analysis of the features of velocity profiles and their variations in the Togara Strait,Luzon Strait and Eastern Taiwan Strait showed that;1)the velocity profiles had striped pattern in the Eastern Taiwan Strait,where monthly flux varied from 22.4 to 28.1 Sv and annual mean was about 25.8 Sv;2)the profiles of velocity in the Togara Strait were characterized by core structure,and monthly flux varied from 23.3 to 31.4 Sv,with annual mean of about 27.9 Sv;3)water flowed from the SCS to the ECS in the Taiwan Strait,with maximum flux of 3.1 Sv in July and minimum of 0.9 Sv in November;4)the flux in the Tsushima Strait varied by only about 0.4 Sv by season and its annual mean was about 2.3 Sv;5)Kuroshio water flowed into the SCS in the Luzon Strait throughout the year and the velocity profiles were characterized by multi-core structure.The flux in the Luzon Strait was minimun in June(about 2.4 Sv)and maximum in February(about 9.0 Sv),and its annual mean was 4.8 Sv;6)the monthly flux in the Mindoro Strait was maximum in December(3.0 Sv)and minimum in June(Only 0.1 Sv),and its annual mean was 1.3 Sv;7)Karimata Strait water flowed into the SCS from May to August,with maximum in-flow flux of about 0.75 Sv in June and flowed out from September to April at maximum outflow flux of 3.9 Sv in January.The annual mean flux was about 1.35 Sv.  相似文献   

2.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

3.
Based on the EOF analyses of Absolute Dynamic Topography satellite data,it is found that,in summer,the northern South China Sea(SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter.A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS.Numerical experiments show that the nonlinear term,the pressure torque and the planetary vorticity advection play important roles in the circulation of the northern SCS,whilst the contribution by seasonal wind stress curl is local and limited.Only a small part of the Kuroshio water intrudes into the SCS,it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait(LS) and a negative vorticity band along the 200 m isobath of the northern basin.The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS.Besides the Kuroshio intrusion and monsoon,the water transports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS,and the induced vorticity field in summer is almost contrary to that in winter.The strength variations of these three key factors(Kuroshio,monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS.As for the water exchange via the LS,the Kuroshio intrusion brings about a net inflow into the SCS,and the monsoon has a less effect,whilst the water transports via the Sunda Shelf and the Sibutu Passage are the most important influencing factors,thus,the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.  相似文献   

4.
By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC: The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress. Supported by the National Basic Research Program of China (973 Program, Nos. 2007CB411804, 2005CB422303), the NSFC (No. 40706006), the Key Project of International Science and Technology Cooperation Program of China (No. 2006DFB21250) and the “111 Project” (B07036), the Program for New Century Excellent Talents in University (NECT-07-0781)  相似文献   

5.
A P-vector method was optimized using variational data assimilation technique, with which the vertical structures and seasonal variations of zonal velocities and transports were investigated. The results showed that westward and eastward flowes occur in the Luzon Strait in the same period in a year. How ever thenet volume transport is westward. In the upper level (0m -- -500m), the westward flow exits in the middle and south of the Luzon Strait, and the eastward flow exits in the north. There are two centers of westward flow and one center of eastward flow. In the middle of the Luzon Strait, westward and eastward flowes appear alternately in vertical direction. The westward flow strengthens in winter and weakens in summer. The net volume transport is strong in winter (5.53 Sv) but weak in summer (0.29 Sv). Except in summer, the volume transport in the upper level accounts for more than half of the total volume transport (0m -- bottom). In summer, the net volum etransport in the upper level is eastward (1.01 Sv), but westward underneath.  相似文献   

6.
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February–March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait. Supported by Natural Science Foundation of China (No.40730846; 40521003)  相似文献   

7.
Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009,we studied the circulation structure in the Luzon Strait area,examined the routes of water exchange between the South China Sea(SCS) and the Philippine Sea,and estimated the volume transport through Luzon Strait.We found that the Kuroshio axis follows a e-shaped path slightly east of 121uE in the upper layer.With an increase in depth,the Kuroshio axis became gradually farther from the island of Luzon.To study the water exchange between the Philippine Sea and the SCS,identification of inflows and outflows is necessary.We first identified which flows contributed to the water exchange through Luzon Strait,which differs from the approach taken in previous studies.We determined that the obvious water exchange is in the section of 121°E.The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume,and mainly in the 100±500 m layer at 19.5°±20°N(accounting for 4.40 Sv),while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°±20°N and upper 400 m at 21°±21.5°N,and below 240 m at 19°±19.5°N,accounting for 1.07,3.02 and 3.43 Sv in volume transport,respectively.  相似文献   

8.
Characteristics of water exchange in the Luzon Strait during September 2006   总被引:7,自引:1,他引:6  
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of t...  相似文献   

9.
10.
In this work, Princeton Ocean Model (POM) was used to study the formation of the South China Sea Warm Current (SCSWC) in the barotropic case. Monthly averaged wind stress and the inflow/outflow transports in January were used in the numerical simulation which reproduced the SCSWC. The effects of wind stress and inflow/outflow were studied separately. Numerical experiments showed thatthe Kuroshio intrusion through the Luzon Strait and the slope shelf in the northern SCS are necessary conditions for the founation of the SCSWC. In a flat bottom topography experiment, the wind stress drivennortheast current in the northern SCS is a compensatory current.  相似文献   

11.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas, vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves are approximated by a set of two-time-level semi-implicit fimite difference equations. The major terms including the local acoeleration, sea-surface slope, Coriolis force and the bottom friction are approximated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are approximated with the Leith scheme. The difference equations are split into two sets of alternating direction implicit equations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, and one west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coast of Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summer and winter monsoons generate several eddies in the South China Sea. Project supported by the National Natural Science Foundation of China.  相似文献   

12.
A numerical study on seasonal variations of the Taiwan Warm Current   总被引:3,自引:0,他引:3  
Princeton Ocean Model (POM) is employed to investigate the Taiwan Warm Current (TWC) and its seasonal variations. Results show that the TWC exhibits pronounced seasonal variations in its sources, strength and flow patterns. In summer, the TWC flows northeast in straight way and reaches around 32°N; it comes mainly from the Taiwan Strait, while its lower part is from the shelf-intrusion of the Kuroshio subsurface water (KSSW). In winter, coming mainly from the shelf-intrusion of the Kuroshio northeast of Taiwan, the TWC flows northward in a winding way and reaches up around 30°N. The Kuroshio intrusion also has distinct seasonal patterns. The shelf-intrusion of KSSW by upwelling is almost the same in four seasons with a little difference in strength; it is a persistent source of the TWC. However, Kuroshio surface water (KSW) can not intrude onto the shelf in summer, while in winter the intrusion of KSW always occurs. Additional experiments were conducted to examine effects of winds and transport through  相似文献   

13.
Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI), the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50–75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the northern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Niño event.  相似文献   

14.
A dynamic box model of bioactive elements in the southern Taiwan Strait   总被引:3,自引:0,他引:3  
A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO_4-P,NO_3-N,AOU,POC and PON in the southern Taiwan Strait region based on field data of the"Minnan Taiwan Bank Fishing Ground Upwelling Ecosystem Study" during the period of Dec.1987-Nov.1988.According to the unique hydrological and topographical features of the region,six boxesand three layers were considered in the model.The variation rates and fluxes of elements induced by hor-izontal current,upwelling,by diffusion,sinking of particles and biogeochemical processes were estimatedrespectively.Results further confirmed that upwellings had important effects in this region.Thenearshore upwelling areas had net input fluxes of nutrients brought by upwelling water,also had high de-pletion rates of nutrients and production rates of particulate organic matter and dissolved oxygen.Theabnormal net production of nutrients in the middle layer(10-30m) indicated the important role of bacte-ria in this high production region.Th  相似文献   

15.
Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO3^--N, NO2^--N, NH4^ -N, SIO3^2--Si, PO4^3--P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq. ( 1 ) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C, the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D, the coefficient of water temperature‘s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant-nutrient concentTations but low phytoplankton biomass in some waters is reasonably explained in this paper.  相似文献   

16.
Data obtained from a comprehensive multidisciplinary oceanographic survey in the central and northern parts of the Taiwan Strait, 24°20′-26°00′N, 118°45°-121°00′E by the Fujian Institute of Oceanology during the period May, 1983 through May, 1984, showed that the distributions of dissolved oxygen (DO), nitrate, dissolved inorganic phosphate and silicate concentrations here had obvious areal and seasonal characteristics that were mainly influenced by the seasonal circulation ofthree major water systems in the Taiwan Strait-- the Taiwan Strait Warm Water (TSWW), theZhejiang-Fujian Coastal Water (ZFCW), and the Northeastern Strait Warm Water (NESWW).  相似文献   

17.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas,vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves areapproximated by a set of two-time-level semi-implicit finite difference equations. The major terms in-cluding the local acceleration, sea-surface slope, Coriolis force and the bottom friction are approxi-mated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are app-roximated with the Leith scheme. The difference equations are split into two sets of alternating directionimplicit quations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, andone west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coastof Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summerand winter monso  相似文献   

18.
The tendency of South China Sea throughflow (SCSTF) variation associated with the local monsoon system, and its impact on upper-layer thermal structure, are studied using the Simple Ocean Data Assimilation (SODA) dataset, combined with Ishii reanalysis data. Luzon Strait Transport (LST) is measured and used as an index for studying the SCSTF variation. Results show that LST had an increasing tendency over the last 50 years, mainly in summer and fall. The increasing tendency was 0.017 1 Sv/a in summer and 0.027 4 Sv/a in fall, as estimated by SODA, and 0.018 0Sv/a in summer and 0.018 9 Sv/a in fall, as estimated by "Island Rule" theory. LST increased by 0.53Sv in JJA (June-July-August) and 0.98Sv in SON (September-October-November) after climate shift, as inferred by SODA data. The average LST anomaly in JJA and SON is strongly related to the local monsoon system, especially to variability of the meridional wind stress anomaly after application of a 3-year running mean, with correlation coefficients 0.57 and 0.51, respectively. In addition to the basin-scale wind forcing, the local northeasterly wind stress anomaly in the SCS can push Pacific water entering the SCS more readily in JJA and SON after climate shift, and an SCSTF-associated cooling effect may favor subsurface cooling more frequently after climate shift.  相似文献   

19.
We studied the driving force of the Kuroshio intrusion into the South China Sea (SCS) during the winter monsoon, using satellite-tracked drifters entering the Luzon Strait (LS) through the Balintany and Babuyan Channels from the Philippine Sea. Most drifters passing through the Babuyan Channel in winter entered the interior SCS without a significant change in velocity. However, half of the drifters passing through the Balintany Channel entered the SCS at ~30 cm/s, which was faster than when they entered the LS. The other half continued moving northwestward into the Kuroshio and returned to the North Pacific. Quantitative analyses, using surface climatological wind and sea surface height anomaly (SSHa) data explained both the difference in velocity of drifters between the two channels and their acceleration through the Balintany Channel. The results suggest that the positive meridional gradient of sea surface height in the Luzon Strait, caused by the pileup of seawater driven by the Northeast monsoon, as well as Ekman flow, contribute to the Kuroshio intrusion into the SCS through the Babuyan and Balintany Channels. The former may be the main driving force.  相似文献   

20.
热带气旋作为一种海上灾害性天气,对“海上丝绸之路”海上航运影响重大。本文基于西北太平洋和北印度洋1990—2017年的热带气旋路径数据,结合热带气旋风场参数模型,利用缓冲区分析、叠加分析等GIS空间分析技术,系统研究了“海上丝绸之路”主要海域、主要海区、关键通道受热带气旋影响频次以及热带气旋危险性的时空分布特征。主要结论:① “海上丝绸之路”主要海域受热带气旋影响严重,表现在热带气旋影响范围广、影响频次高,其中西北太平洋较北印度洋受热带气旋影响更为严重,危险性更大;② 西北太平洋的15°N—30°N,120°E-—145°E海域热带气旋危险性最高;③ 热带气旋危险性季节变化较为明显,秋夏两季危险性较高,冬春两季危险性较低,在夏秋两季各月份中,7、8、9、10月危险最高;④ 在各海区中,中国东部海区热带气旋危险最高,其次是南海、日本海、孟加拉湾、阿拉伯海,而红海和波斯湾不受热带气旋影响;在各关键通道中,吕宋海峡热带气旋危险性最高,其次是台湾海峡、对马海峡、宗谷海峡、鞑靼海峡、保克海峡、霍尔木兹海峡,而马六甲海峡和曼德海峡无热带气旋危险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号