首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We have the elemental abundances and isotopic compositions of noble gases in Muong Nong‐type tektites from the Australasian strewn field by crushing and by total fusion of the samples. We found that the abundances of the heavy noble gases are significantly enriched in Muong Nong‐type tektites compared to those in normal splash‐form tektites from the same strewn field. Neon enrichments were also observed in the Muong Nong‐type tektites, but the Ne/Ar ratios were lower than those in splash‐form tektites because of the higher Ar contents in the former. The absolute concentrations of the heavy noble gases in Muong Nong‐type tektites are similar to those in impact glasses. The isotopic ratios of the noble gases in Muong Nong‐type tektites are mostly identical to those in air, except for the presence of radiogenic 40Ar. The obtained K‐Ar ages for Muong Nong‐type tektites were about 0.7 Myr, similar to ages of other Australasian tektites. The crushing experiments suggest that the noble gases in the Muong Nong‐type tektites reside mostly in vesicles, although Xe was largely affected by adsorbed atmosphere after crushing. We used the partial pressure of the heavy noble gases in vesicles to estimate the barometric pressure in the vesicles of the Muong Nong‐type tektites. Likely, Muong Nong‐type tektites solidified at the altitude (between the surface and a maximum height of 8–30 km) lower than that for splash‐form tektites.  相似文献   

2.
Abstract— Three samples of Muong Nong tektites have been studied for N and noble gases. The isotopic composition of noble gases is airlike. The noble gas amounts are much higher in Muong Nong tektites than in splash-form tektites. As compared to air, He and Ne have been enriched, most likely due to inward diffuion from ambient air, subsequent to glass formation. Nitrogen contents range from 0.3 to 1.34 ppm, with a non-atmospheric δ15N ranging from 8 to 17%. The release pattern of δ15N clearly shows the presence of two N components. Higher N/36Ar values than those of air, together with positive δ15N, show that a major portion of N in Muong Nong tektites is a remnant from the sedimentary source material.  相似文献   

3.
Abstract— We measured noble gases and Ne isotopic compositions of five tektites collected from three different strewn fields. The elemental abundance patterns of noble gases in all samples show anomalous Ne enrichments relative to air. Ne isotopic compositions in tektites are in good agreement with that of atmospheric Ne, suggesting that Ne has diffused in from the atmosphere. It is conceivable that the high relative Ne abundance is essentially an equilibrium effect, i.e., storage of Ne in vesicles rather than the glass itself, facilitated by the relatively high diffusion coefficient of Ne.  相似文献   

4.
Abstract— Five indochinites from Hainan Island and the Leizhou Peninsula, China were analyzed for noble gas abundances and isotopic ratios. These splash‐form tektites show vesiculation ranging from 0.4 vol% to 8 vol%, as determined by digital image analysis (software SXM®) on thin section photographs. To study the distribution of noble gases in vesicles and in glass, the gases were extracted by heating and by crushing, respectively, on 2 aliquots of the same sample. The results show that 5 to 53% of the total measured 20Ne resides in vesicles. The calculated concentration of neon dissolved in the glass is higher (0.7‐1 times 10?7 cm3STP/g) than that expected from solubility equilibrium (1 times 10?8 cm3STP/g), assuming solubility data from MORB glasses. The neon concentration of splash‐form tektites, those analyzed in this work and those from other strewn‐fields worldwide, is correlated with the SiO2 content of glass and with the nonbridging oxygen per tetrahedral cation in the melt (hereafter NBO/T ratio), the latter being an index of the free‐volume in the silica network where neon could be dissolved. These correlations suggest that the glass structure of tektite has a larger free‐volume available for dissolving noble gases than MORB glasses.  相似文献   

5.
The Australasian tektites are quench melt glass ejecta particles distributed over the Asian, Australian, and Antarctic regions, the source crater of which is currently elusive. New 40Ar/39Ar age data from four tektites: one each from Thailand, China, Vietnam, and Australia measured using three different instruments from two different laboratories and combined with published 40Ar/39Ar data yield a weighted mean age of 788.1 ± 2.8 ka (±3.0 ka, including all sources of uncertainties) (P = 0.54). This age is five times more precise compared to previous results thanks, in part, to the multicollection capabilities of the ARGUS VI noble gas mass spectrometer, which allows an improvement of almost fourfold on a single plateau age measurement. Diffusion experiments on tektites combined with synthetic age spectra and Monte Carlo diffusion models suggest that the minimum temperature of formation of the Thai tektite is between 2350 °C and 3950 °C, hence a strict minimum value of 2350 °C.  相似文献   

6.
Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration. The Leoville and Krymka dark inclusions must have accreted from regions different from those of their respective rims and matrices and were later incorporated into their host meteorites. The noble gas data imply a heterogeneous reservoir with respect to its primordial noble gas content in the accretion region of the studied meteorites. Further studies will have to decide whether these differences are primary or evolved from an originally uniform reservoir.  相似文献   

7.
Abstract— Previous work indicates that Muong Nong-type tektites from Indochina with low refractive indices and high silica contents contain relict mineral grains while those with high refractive indices and low silica contents do not. Instrumental Neutron Activation Analysis (INAA) was used to determine selected trace element concentrations for four Muong Nong-type tektites with high refractive indices and no relict mineral inclusions and one with low refractive index and relict inclusions, to determine if there are any systematic differences in trace element compositions between the two groups. The data also were compared with published trace element data for sixteen Muong Nong-type tektites which have low refractive indices and, therefore, should contain relict inclusions. Except for Ta which had lower concentrations in the high refractive index group, there is no consistent difference in trace element compositions between the two groups. We interpret these results to indicate a single, slightly heterogeneous source for the Muong Nong-type tektites, rather than different source regions.  相似文献   

8.
Abstract— Fifty-odd years of tektite research are reviewed, proceeding from the discovery of the first North American tektites in 1936. This included the early recognition that tektites were terrestrial objects rather than meteorites and that the glassy particles in tektites were fused quartz (lechatelierite). Later, during National Science Foundation-supported research, it was found that some tektites appeared to have formed as puddles of melt, that the content and character of bubbles in lechatelierite can be used as a relative temperature scale, that rayed bubbles in tektites formed from hydrous minerals, that bubbles in tektites formed chiefly from water which was absorbed into the walls of the bubbles leaving vacuums, and that “fingers” in the surficial part of some tektites may have formed by differential volatilization. Some unpublished observations and adventures are briefly reported.  相似文献   

9.
Abstract— Elemental and isotopic compositions of the noble gases have been determined in six North American tektites (4 bediasites and 2 georgiaites) and one Ivory Coast tektite. Radiogenically produced 4He may explain the large 4He/36Ar ratios measured relative to air, despite significant diffusive losses. The Ne isotopic composition is enriched in 20Ne consistent with a single stage mass fractionation process. The enormous 20Ne/36Ar enrichments observed in all tektite samples, similar to those reported from other tektites and impact glasses, are attributed to atmospheric diffusion into the samples following solidification. The North American tektites show a systematic increase in 84Kr/36Ar and 132Xe/36Ar relative to air, with enrichments greater than those determined for any other tektite group or terrestrial samples other than shales. These enrichments are inconsistent with existing models of dissolving Kr and Xe in tektite glass without elemental fractionation at atmospheric pressures equivalent to ∼40 km altitude. The Kr and Xe isotopic compositions are indistinguishable from atmospheric within experimental uncertainty.  相似文献   

10.
Abstract— The L/LL5 chondrite Knyahinya had an approximately spherical shape, and as it experienced a single stage exposure history, it represents a very interesting object to study depth profiles of cosmic-ray-produced nuclide concentrations. Such data are required to improve and to validate model calculations of production rates. We report Ne, Ar, Kr and Xe isotopic abundances in five bulk samples. The adopted procedure of noble gas extraction included two pyrolysis steps at 450 °C and 650 °C, respectively, followed by a combustion step in pure O2 at 650 °C before melting the sample. This procedure allows for the separation of a significant fraction of the trapped Kr and Xe, leading to an enrichment of the cosmic-ray produced component, which is released in the melting step. The isotopic composition of the trapped Xe component measured in the combustion step is found to be identical with the OC-Xe composition (Lavielle and Marti, 1992) and supports the suggestion that ordinary chondrites formed in a homogeneous trapped noble gas reservoir. Cosmic-ray produced Kr and Xe components and depth profiles were measured, including for the first time a 81Kr profile. The calculated exposure age of 39.5 ± 1.0 Ma, based on the 81Kr-Kr method, is found to be in excellent agreement with previous determinations. The concentrations of trapped and fissiogenic noble gas components are clearly lower than those generally observed in type 5 ordinary chondrites and may suggest diffusion losses before a meter-sized object was exposed to the cosmic radiation.  相似文献   

11.
Seventy-six field expeditions for Georgia tektites have been made to the vicinity of Dodge County, Georgia in an effort to determine the parent formation and distribution pattern by locating new specimens. About 67 new specimens have been recovered; they represent about 9 percent of all known specimens. The primary area of distribution is a fan shaped area approximately 30 by 72 kilometers. It is likely that these tektites have been transported by water from the parent formation. No correlation could be found between size, shape, soil type, elevation and tektite location. Georgia tektites have previously been found only in strata much younger than their 34 m.y. radiometric age. Here, however, the parent formation is identified as the Tobacco Road Sand of this age.  相似文献   

12.
Abstract— To test different hypotheses of moldavite formation, a major and trace-element study of 25 moldavite tektites and Sm-Nd isotope measurement of three moldavite tektites was completed. The samples were selected from the classical substrewnfields and the newly described locations in Lusatia (Saxony, Germany). Samples with unusual bulk composition were also included. The results confirm earlier studies that the variation in the chemical composition can be explained by single impact and through incomplete mixing of at least three lithographical components dominated by one of the three minerals or mineral groups: dolomite, clay minerals and quartz. An additional endmember, possibly a rare Earth's mantle component, containing high Co, Cr and Ni concentrations is also needed to explain the observed variations in compatible elements of some tektites. Volatile element abundances are low but not necessarily the result of selective volatilization.  相似文献   

13.
The surface structures of irghizites from the Zhamanshin crater in Kazachstan, USSR, play an important role in the discussion of their genesis. These surface structures were compared with those of typical tektites (australites) and pyroclastics (obsidians, lapilli) based on investigation by electron microscope. The results of these investigations indicate that there are no unambiguous genetical relationships between the morphology of irghizites and the surface features of tektites and pyroclastics. The surface shapes of irghizites result from several simultaneous or successive processes, in the course of which globules of different size melted, stuck together and were eaten into by corrosive gases after their solidification. The assumption that the verrucose swellings were caused by expanding gas bubbles immediately below the surface of the glass bulk can be excluded. The verrucose glass globules are identical in chemical composition to the glass bulk of the irghizites.  相似文献   

14.
Abstract– Tektites, natural silica‐rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high‐temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high‐temperature melting generally produced higher gas yield and different gas composition than the low‐temperature extraction using crushing or milling under vacuum. The high‐temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35–41 ppm C with δ13C values in the range from ?28.5 to ?29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.  相似文献   

15.
Abstract— Abundant tektites have been found in buried alluvial gravels at the south end of Lake Argyle in far northern Australia. The recovered tektites are unusual in that an astounding number are very large and 75% of those analyzed to date are HMg tektites, heretofore a very rare type in Australia. It is now clear that the paucity of tektites in northern Australia is due to the former high energy erosional environment rather than to crossing the strewnfield boundary, as has been previously suggested. The N-S extent of the australite strewnfield encompasses the entire continent.  相似文献   

16.
Abstract— One hundred and thirteen Australasian tektites from Vietnam (Hanoi, Vinh, Dalat, and Saigon areas) were analyzed for their major and trace element contents. The tektites are either of splash form or Muong Nong‐type. The splash‐form tektites have SiO2 contents ranging from 69.7 to 76.8 wt%, whereas Muong Nong‐type tektites, which are considerably larger than splash‐form tektites and have a blocky and chunky appearance, have slightly higher silica contents in the range of 74–81 wt%. Major‐element relationships, such as FeO versus major oxides, Na2O versus K2O, and oxide ratio plots, were used to distinguish the different groups of the tektites. In addition, correlation coefficients have been calculated for each tektite group of this study. Many chemical similarities are noted between Hanoi and Vinh tektites from the north of Vietnam, except that the Hanoi tektites contain higher contents of CaO than Vinh; the higher content of CaO might be due to some carbonate parent material. Both Dalat and Saigon tektites have nearly similar composition, whereas the bulk chemistries of the tektites from Hanoi and Vinh appear different from those of Saigon and Dalat. There are differences, especially in the lower CaO and Na2O and higher MgO, FeO, for the tektites of Dalat and Saigon in comparison to that of Hanoi tektites. Furthermore, the Dalat and Saigon tektites show enrichments by factors of 3 and 2 for the Ni and Cr contents, respectively, compared to those of Hanoi and Vinh. The difference in chemistry between the North Vietnam tektites (Hanoi, Vinh) to that of South Vietnam tektites (Saigon, Dalat) of this study indicate that the parent material was heterogeneous and possibly mixing between different source rocks took place. Muong Nong‐type tektites are enriched in the volatile elements such as Br, Zn, As, and Sb compared to the average splash‐form tektites of this study. The chemical compositions of the average splash‐form and Muong Nong‐type tektites of this study closely resemble published data for average splash‐form and Muong Nong‐type indochinites, indicating that they have the same source. The trace element ratios Ba/Rb (2.7), Th/U (5.2), Th/Sc (1.3), Th/Sm (2.2), and the rare earth element (REE) abundances of this study show close similarities to those of average upper continental crust.  相似文献   

17.
Abstract— Late Eocene tektite material from DSDP site 612 is composed of angular to spherical tektites and microtektites containing abundant vesicles and a few unmelted to partially melted mineral inclusions. The major element compositions of the 612-tektites are generally comparable to those of North American tektites, but the physical features suggest that the DSDP-612 tektites were formed by less severe shock melting. The 87Sr/86Sr and 143Nd/144Nd compositions of 612-tektites: a) show much wider ranges than the tightly constrained group of North American tektites and microtektites, and b) are significantly different from those of other groups of tektites. The existence of large isotopic variations in tektites from DSDP site 612 requires that they were formed from a chemically and isotopically heterogeneous material in a regime that is distinctive from that of other groups of tektites. TNDCHUR and TSrUR model ages of the 612-tektites indicate that they were formed from a crustal source of late Precambrian mean age (800–1000 Ma) which in middle Palaeozoic time (?400 Ma) was further enriched in Rb/Sr during sedimentary processes. These source characteristics suggest that the impact which produced the 612-tektites occurred in rocks of the Appalachian orogeny or sediments derived from this orogenic belt. Potential source materials for both 612-tektites and North American tektites are present on the eastern and southeastern part of the North American continent and its adjacent shelf. The distinct isotopic differences between 612-tektites and North American tektites indicate that the two groups of tektites were either formed by the impact of more than one bolide in the same general area, or by a single impact event that sampled different layers.  相似文献   

18.
Abstract— We have analyzed fluorine and boron in nine tektites from all four strewn fields, and in a suite of impact glasses and target rocks from the Zhamanshin and Darwin impact craters, as well as Libyan Desert Glass and Aouelloul impact glass samples. Fluorine and boron are useful indicators for the volatilization and temperature history of tektites and impact glasses. Tektites from different strewn fields show a limited range of F and B contents and have F/B ratios near unity. Most splash-form tektites have lower average F and B contents than Muong Nong type tektites, which is similar to the relation between irghizites and zhamanshinites. The F and B contents in target rocks from the Zhamanshin and Darwin impact craters are similar to normal terrestrial sediments. Fluorine in impact glasses and tektites is more depleted compared to their (known or inferred) target rocks than is boron, which is caused by the higher volatility of F. The F/B ratios therefore decrease with increasing temperature of formation (suggesting that irghizites were formed at a higher temperature than zhamanshinites, and Muong Nong type tektites at a lower temperature than splash-form tektites). Mixing of local country rocks together with partial loss of the volatiles F and B can reproduce the F and B contents of impact glasses.  相似文献   

19.
20.
Abstract— The size, shape, composition, and vesicle content of 6 kg of layered tektite fragments, excavated near the town of Huai Sai, Thailand, place some constraints on the formation of layered tektites. The mass, shape, and distribution of the fragments are not consistent with an origin as a “puddle” of impact melt but suggest that they were derived from a single equant block. The presence of vesicles up to 7 mm in mean diameter within the tektite fragments suggests that the material was too viscous to allow for significant gravity-driven flow. These results suggest that layered tektites may be analogous to lava bombs, which may have been stretched and deformed in flight but underwent little flow after landing. Rather than being a product of “unusual circumstances,” such as multiple impacts, layered tektites may differ from splash-form tektites only in initial temperature of formation, speed of ejection, and small differences in initial composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号