首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
太阳是与地球关系最为密切的天体.发生在日面上的剧烈爆发性活动可能对人类的生存环境产生巨大影响甚至是灾难性后果.包含太阳耀斑、暗条爆发和日冕物质抛射在内的太阳爆发活动是同一物理过程的不同表现形式,其能量来源于爆发前储存在日冕中的磁场自由能.因此,了解日冕磁场的3维结构是理解太阳爆发的触发机制以及活动区的稳定性等现象的前提.由于观测技术限制,目前尚无法对日冕磁场进行常规观测,因此发展了多种利用可常规观测的光球磁场来重建日冕磁场的方法.主要评述近10 yr来各种日冕磁场重建方法在研究太阳爆发活动中的应用.  相似文献   

2.
对地日冕物质抛射研究   总被引:5,自引:0,他引:5  
日冕物质抛射,作为太阳大气中频繁发生的极为壮观的活动现象,越来越受到太阳物理学家的关注。其中一类特殊的抛射事件--对地日冕物质抛射,通常与大的地磁暴、行星际激波和高能粒子事件相伴生,具有强烈的地球物理效应,是影响空间天气的主要因素之一。概括了对地日冕物质抛射的研究现状,重点介绍了与对土日冕物质抛射事件相联系的光球向量磁场演化的观测研究成果,并由典型事件探讨了暗条爆发、耀五等剧烈太阳活动和对地日冕物质抛射之间的密切关系,提出了尚待解决的主要问题和进一步的研究方向。  相似文献   

3.
本文比较了1982年2月9日同时观测到的两个爆发日珥及一次白光日冕物质抛射事件。比较表明,在研究日冕物质抛射事件与爆发日珥的关系时,爆发日珥的形状可能是一个重要的因素,它体现了局部区域磁场结构的变化。作者提出了一种可能的磁场结构模型,对观测结果给以解释。  相似文献   

4.
该文通过综述相关研究成果,对日冕亮点的观测特征和供能机制进行了总结和评论.日冕亮点是发生在过渡区和低日冕的小尺度局地增亮现象,经常在X射线和极紫外波段观测到,其寿命在5~40 h之间.日冕亮点的产生和演化与双极磁场的相互作用紧密相关.对于日冕亮点的供能机制,目前主要存在三种观点:(1)磁场对消的观点,当不同极性的磁场区域相互靠近时,局地发生磁重联,并在重联区域加热等离子体,从而导致X射线和极紫外辐射的增强;(2)分隔线重联,与日冕亮点相联系的磁场结构可以形成分隔线重联位形,沿分隔线的快速磁场重联导致过渡区和日冕局地的等离子体被加热,从而产生日冕亮点;(3)光球水平运动所诱发的电流片为亮点提供了能量来源.近期研究表明,三种机制可能同时作用,为亮点提供所需的能量.  相似文献   

5.
冕洞磁场研究的现状   总被引:1,自引:1,他引:0  
冕洞是太阳大气日冕层中的现象。近代太阳大气物理性质的研究表明,磁场起着重要的作用。就日冕层来说,磁场明显地起两个作用:一个作用是日冕中的一些现象因贮存在磁场中的磁能积聚而产生;另一个作用是磁场沟通了日冕的物质流和能流。同样,冕洞磁场强度的大小及其位形,对冕洞的物理性质有重要影响。 本文的目的是叙述冕洞磁场近代研究情况,从中看出发展趋势、基本思想、方法和主要结论,同时从中总结出存在的问题和需要深入进行的工作。 本文分四个方面作简要叙述:一、冕洞磁场的经验模式和计算模式;二、冕洞磁场在冕洞内的色球层和过渡区所起的作用;三、冕洞磁场的行星际效应;四、存在问题。  相似文献   

6.
等离子体团型日冕物质抛射的形成机制   总被引:1,自引:0,他引:1  
郑惠南  张兵 《天文学报》1995,36(4):341-349
本文在球坐标二维磁静力平衡基态下,数值研究了电阻撕裂模不稳定性引起日冕电流片中发生磁场重联的过程,结果表明发生了具有两个X线的磁场重联,形成了磁岛和高温高密度的等离子体团,等离子体团在向上运动过程中有着明显的膨胀,其上升速度和膨胀过程与等离子体β值有关,这些结果可用于解释等离子体团型日冕物质抛射的形成。  相似文献   

7.
日冕物质抛射(CME)是巨大的、携带磁力线的泡沫状气体,在几个小时中被从太阳抛射出来的过程。日冕物质抛射伴随着大量带电粒子和辐射的释放,这些物质进入日地空间,对日地空间的磁场造成很大扰动;当它们传播到地球附近时,则严重影响地球的磁场,产生磁暴,也对空间和地面的电子设备造成干扰。日冕物质抛射在传播过程中如果发生偏转,将影响它对地有效性。因此研究日冕物质抛射的偏转特性,对预报日冕物质抛射对日地空间的影响具有重要意义。主要利用2007年10月8日STEREO卫星的日冕物质抛射观测资料,结合全日面线性无力场模型(Global Linear Force-Free Field,GLFFF)进行磁场外推,分析日冕物质抛射偏转与背景磁场能量密度分布之间的关系,并计算日冕物质抛射的运动轨迹。通过改变无力因子α,发现当α=0.15时,计算得到的日冕物质抛射运动轨迹与实际观测的日冕物质抛射运动轨迹拟合得最好。  相似文献   

8.
本文讨论了从太阳光球向日冕传输磁能和磁复杂性的过程。活动日冕,作为由电磁场和粒子组成的系统,其唯一的开场表面是太阳光球。光球层等离子体的运动和磁场的相互作用,是造成磁能和磁复杂性向日冕传播的主要根源;同时,光球上的耗散过程也对日冕磁能和磁复杂性的积累有不可忽视的贡献。  相似文献   

9.
本讨论了从太阳光球向日冕传输磁能和磁复杂性的过程。活动日冕,作为由电磁场和粒子组成的系统,其唯一的开场表面是太阳光球,光球层等离子体的运动和磁场的相互作用,是造成磁能和磁复杂性向日冕传输的主要根据;同时,光球上的耗散过程也对日冕磁能和磁复杂性的积累有不可忽视的贡献。  相似文献   

10.
日冕是太阳大气活动的关键区域, 是日地空间天气的源头. 受观测限制, 对日冕低层大气等离子体结构和磁场状态的研究非常欠缺, 国际上对于可见光波段日冕低层大气的亮度分层研究很少. 利用丽江日冕仪YOGIS (Yunnan Green-line Imaging System)的日冕绿线($\rm Fe_{\Rmnum{14  相似文献   

11.
Catastrophe of coronal magnetic rope embedded in a partly open multipolar background magnetic field is studied by using a 2-dimensional, 3-component ideal MHD model in spherical coordinates. The background field is composed of three closed bipolar fields of a coronal streamer and an open field with an equatorial current sheet. The magnetic rope lies below the central bipolar field, and it is characterized by its annular and axial magnetic fluxes. For a given annual flux, there is a critical value of the axial flux, and for a given axial flux, there is a critical value of annual flux such that, below the critical value, the magnetic rope is attached to the solar surface and the system stays in equilibrium, but when the critical value is exceeded, the magnetic rope breaks free and erupts upward. This implies that catastrophe can occur in a coronal magnetic rope embedded in a partly open multipolar background magnetic field. Our computation gives a threshold value of magnetic energy that is about 15% greater than the energy of the partly open magnetic field (the central bipolar field open and the fields on either side closed). The excess energy may serve as source for solar explosions such as coronal mass ejections.  相似文献   

12.
The intensity of the green coronal Fe XIV λ530.3-nm line is correlated with sunspot areas and the magnetic field strength calculated for a distance of 1.1R . The relation of the green line emission to large-scale and local magnetic fields is shown to change differently with cycle phase. Large-scale coronal magnetic fields play a decisive role at the ascending phase, while a slightly higher correlation of the green line intensity with the local magnetic fields of sunspots is observed at the descending phase. Our results can be used to construct and test various solar coronal heating models.  相似文献   

13.
The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible, e.g., in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g., potential fields (current-free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.  相似文献   

14.
Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields is continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared to the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares.Visiting Scientist, Kitt Peak National Observatory, Tucson Arizona.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

15.
The heating of the solar corona by resistive turbulence of coronal magnetic fields is considered. The theory of this process, based on the Taylor-Heyvaerts-Priest hypothesis and a magnetic relaxation equation, is developed. Such an approach allows one to obtain the successive magnetic reconnection configurations and energy balance of the coronal magnetic field in response to prescribed motions of the photospheric footpoints. Two specific models of the coronal magnetic configuration are investigated, namely an array of closely packed flux tubes and a two-dimensional magnetic arcade.  相似文献   

16.
Lee  Jeongwoo  White  Stephen M.  Gopalswamy  N.  Kundu  M. R. 《Solar physics》1997,174(1-2):175-190
Microwave emission from solar active regions at frequencies above 4 GHz is dominated by gyroresonance opacity in strong coronal magnetic fields, which allows us to use radio observations to measure coronal magnetic field strengths. In this paper we demonstrate one powerful consequence of this fact: the ability to identify coronal currents from their signatures in microwave images. Specifically, we compare potential-field (i.e., current-free) extrapolations of photospheric magnetic fields with microwave images and are able to identify regions where the potential extrapolation fails to predict the magnetic field strength required to explain the microwave images. Comparison with photospheric vector magnetic field observations indicates that the location inferred for coronal currents agrees with that implied by the presence of vertical currents in the photosphere. The location, over a neutral line exhibiting strong shear, is also apparently associated with strong heating.  相似文献   

17.
A model is presented for the penetration into the corona of a new magnetic field of a developing bipolar region and for its interaction with an old large-scale coronal field. An important feature of the model is a reconnection of the old and new fields inside the current sheet arising along the zero line of the total magnetic field calculated in the potential approximation. The magnetic reconnection and accumulation of plasma inside the current sheet can explain the appearance of dense coronal loops and the energy source at their tops. The plasma together with the magnetic lines is flowed into the sheet from both its sides. This fact explains the appearance of coronal cavities above the loops. If the large-scale field gradually decreases with the height, the loop motion is slowed down. The account of the dipolar structure of the magnetic field at large heights explains the possibility of a rapid break of the new field through the corona and the appearance of transients and open field regions - the coronal holes. In this case a fast rising current sheet can be a source of accelerated particles and of type II radio burst, instead of the shock wave considered usually.  相似文献   

18.
High-resolution studies of the Sun’s magnetic fields are needed for a better understanding of the fundamental processes responsible for solar variability. The generation of magnetic fields through dynamo processes, the amplification of fields through the interaction with plasma flows, and the destruction of fields are poorly understood. There is incomplete insight into physical mechanisms responsible for chromospheric and coronal structure and heating, causes of variations in the radiative output of the Sun, and mechanisms that trigger flares and coronal mass ejections. Progress in answering these critical questions requires study of the interaction of the magnetic field and convection with a resolution sufficient to observe scale fundamental to these processes. The planned 4 m aperture ATST will be a unique scientific tool, with excellent angular resolution, a large wavelength range, and low scattered light. With its integrated adaptive optics, the ATST will achieve a spatial resolution nearly 10 times better than any existing solar telescope. The ATST design and development phase began in 2001 and it is now ready to begin construction in 2009.  相似文献   

19.
The intensity of Fe XIV 530.3-nm green coronal line is compared quantitatively with the strength of magnetic fields of small and large scales and also with total sunspot areas for 1977–2001. A degree of similarity of appropriate synoptic maps is evaluated using correlation analysis. The green line intensity maps are constructed from data of its daily monitoring. Strengths of magnetic fields are calculated in a potential approximation using the photosphere observations of Wilcox Solar Observatory for a distance of 1.1 The calculations are performed separately for fields of large and small spatial scales. The total area of sunspots is obtained using data from the Greenwich Catalogue and its continuation by USAF/NOAA. The correlation has been calculated for the aggregate of areas (with a size of 20° in latitude and 30° in longitude) coinciding spatially on all maps. It is found that the most correlation between the green line intensity and coronal fields of small scales is observed in a zone of 0°–20°. The correlation with total sunspot areas (i.e., with local fields at the photosphere level) is substantially less here. In the higher-latitude zone 20°–40°, correlation of the green-line intensity with spot areas and small-scale coronal fields decreases. The large-scale fields have little influence on the green-line emission in the spot-formation zone. These results are the evidence of a complex nature of the effect of different-scale fields, arising as a result of dynamo activity in the subsurface (leptocline) and deep-lying (tachocline) layers of the convective zone, on the processes of the Sun’s corona heating and green coronal line emission.  相似文献   

20.
A spatiotemporal analysis of long-term measurements of the Sun’s magnetic field was carried out to study changes in its zonal structure and reversals of the polar fields in Cycles 21?–?24. A causal relationship between activity complexes, their remnant magnetic fields, and high-latitude magnetic fields has been demonstrated in the current cycle. The appearance of unipolar magnetic regions near the poles is largely determined by the decay of long-lived activity complexes. The nonuniform distribution of sunspot activity and its north–south asymmetry result in the asymmetry of remnant fields that are transported poleward due to meridional circulation. The asymmetry of high-latitude magnetic fields leads to an asynchrony of polar-field reversals in both hemispheres. The interaction of high-latitude unipolar magnetic regions with the polar fields affects the embedded coronal holes. The evolution of large-scale magnetic fields was also studied in a time–latitude aspect. It is shown that regular reversals of the Sun’s polar fields resulted from cyclic changes in high-latitude magnetic fields. A triple polarity reversal of the polar fields in Cycle 21 and short-term polarity alternations at the poles were interpreted taking into account the interaction of the remnant fields with the Sun’s polar fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号