首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary mineral assemblages in the nakhlite meteorites, Lafayette, Governador Valadares (GV), Nakhla, Yamato (Y)‐000593/Y‐000749 have been studied using scanning electron microscopy, transmission electron microscopy, and electron probe micro analysis. The different nakhlites have distinctive secondary assemblages in their olivine grains and mesostases, showing compositional fractionation correlated with their relative depths below the Martian surface. Fracture‐filled veins in Lafayette at the bottom of the pile consist of a siderite‐phyllosilicate‐Fe oxide‐hydrated silicate gel assemblage. Corresponding veins in Nakhla and GV further up the pile are predominantly a siderite‐gel assemblage, with additional evaporites including gypsum. Y‐000593/Y‐000749 veins are dominated by gel. The gel’s Mg/(Mg + Fe) ratio decreases from Lafayette (0.37) to GV (0.32), Nakhla (0.24), and Y‐000593 (0.15). We suggest that hydrothermal fluid flowed up this depth profile, initiated by melting of buried H2O–CO2 ice. Our results show a complex mix of Fe‐rich phyllosilicate within the veins and mesostasis of Lafayette with d‐spacings of 0.7–1.1 nm suggesting a mixture of smectite and serpentine. The phyllosilicate formed at close to neutral pH, ≤150 °C. We also suggest that water rock ratios (W/R) of 1–10 occurred in Lafayette with smaller values for the other nakhlites. This is reflected in the volume of alteration minerals: 10% of olivine in Lafayette to 3% in Nakhla. Textural evidence of rapid cooling, together with the W/R and likely fluid velocities, suggest that the secondary assemblages formed quickly, e.g., within months. A model is proposed in which the secondary assemblages formed in an impact‐induced hydrothermal system terminated by precipitation of the gel and evaporation of soluble salts.  相似文献   

2.
Abstract— Antarctic meteorite Miller Range (MIL) 03346 is a nakhlite composed of 79% clinopyroxene, ?1% olivine, and 20% vitrophyric intercumulus material. We have performed a petrological and geochemical study of MIL 03346, demonstrating a petrogenetic history similar to previously discovered nakhlites. Quantitative textural study of MIL 03346 indicates long (>1 × 101 yr) residence times for the cumulus augite, whereas the skeletal Fe‐Ti oxide, fayalite, and sulfide in the vitrophyric intercumulus matrix suggest rapid cooling, probably as a lava flow. From the relatively high forsterite contents of olivine (up to Fo43) compared with other nakhlites and compositions of augite cores (Wo38–42En35–40Fs22–28) and their hedenbergite rims, we suggest that MIL 03346 is part of the same or a similar Martian cumulate‐rich lava flow as other nakhlites. However, MIL 03346 has experienced less equilibration and faster cooling than other nakhlites discovered to date. Calculated trace element concentrations based upon modal abundances of MIL 03346 and its constituent minerals are identical to whole rock trace element abundances. Parental melts for augite have REE patterns that are approximately parallel with whole rock and intercumulus melt using experimentally defined partition coefficients. This parallelism reflects closed‐system crystallization for MIL 03346, where the only significant petrogenetic process between formation of augite and eruption and emplacement of the nakhlite flow has been fractional crystallization. A model for the petrogenesis of MIL 03346 and the nakhlites (Nakhla, Governador Valadares, Lafayette, Yamato‐000593, Northwest Africa (NWA) 817, NWA 998) would include: 1) partial melting and ascent of melt generated from a long‐term LREE depleted mantle source, 2) crystallization of cumulus augite (± olivine, ± magnetite) in a shallow‐level Martian magma chamber, 3) eruption of the crystal‐laden nakhlite magma onto the surface of Mars, 4) cooling, crystal settling, overgrowth, and partial equilibration to different extents within the flow, 5) secondary alteration through hydrothermal processes, possibly immediately succeeding or during emplacement of the flow. This model might apply to single—or multiple—flow models for the nakhlites. Ultimately, MIL 03346 and the other nakhlites preserve a record of magmatic processes in volcanic rocks on Mars with analogous petrogenetic histories to pyroxene‐rich terrestrial lava flows and to komatiites.  相似文献   

3.
Abstract— Pyroxene structural data, along with analyses of titanomagnetite, fayalite and mesostasis of the new nakhlite Miller Range (MIL) 03346, define equilibration near 1 bar, 1100 °C, and oxygen fugacity near the FMQ buffer. There is a clear progression of oxygen fugacity (fO2) in Martian meteorites from reduced Allan Hills (ALH) 84001 to intermediate shergottites to oxidized nakhlites. This trend can be explained by polybaric graphite‐CO‐CO2 equilibria in the Martian mantle. Shergottites would have formed at pressures between 1.2 and 3.0 GPa, and nakhlite parent liquids formed at pressures >3.0 GPa, consistent with geochemical and petrologic data for the shergottites and nahklites. Carbon buffering in the Martian mantle could be responsible for variation in fO2 in Martian meteorites (rather than assimilation or crustal interaction), as well as C‐H‐O fluids that could be the source of ˜30 ppb CH4 detected by recent spacecraft missions. The conundrum of an oxidized current mantle and basalts, but reduced early mantle during core‐mantle equilibrium exists for both the Earth and Mars. A polybaric buffering role for graphite can explain this discrepancy for Mars, and thus it may not be necessary to have an oxidation mechanism like the dissociation of MgFe‐perovskite to account for the oxidized terrestrial mantle.  相似文献   

4.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

5.
Abstract— Experimentally rehomogenized melt inclusions from the nakhlite Miller Range 03346 (MIL 03346) and the lherzolitic shergottite Allan Hills 77005 (ALH 77005) have been analyzed for their rare earth element (REE) concentrations in order to characterize the early melt compositions of these Martian meteorites and to calculate the oxygen fugacity conditions they crystallized under. D(Eu/Sm)pyroxene/melt values were measured at 0.77 and 1.05 for ALH 77005 and MIL 03346, respectively. These melts and their associated whole rock compositions have similar REE patterns, suggesting that whole rock REE values are representative of those of the early melts and can be used as input into the pyroxene Eu‐oxybarometer for the nakhlites and lherzolitic shergottites. Crystallization fO2 values of IW + 1.1 (ALH 77005) and IW + 3.2 (MIL 03346) were calculated. Whole rock data from other nakhlites and lherzolitic shergottites was input into the Eu‐oxybarometer to determine their crystallization fO2 values. The lherzolitic shergottites and nakhlites have fO2 values that range from IW + 0.4 to 1.6 and from IW + 1.1 to 3.2, respectively. These values are consistent with some previously determined fO2 estimates and expand the known range of fO2 values of the Martian interior to four orders of magnitude. The origins of this range are not well constrained. Possible mechanisms for producing this spread in fO2 values include mineral/melt fractionation, assimilation, shock effects, and magma ocean crystallization processes. Mineral/melt partitioning can result in changes in fO2 from the start to the finish of crystallization of 2 orders of magnitude. In addition, crystallization of a Martian magma ocean with reasonable initial water content results in oxidized, water‐rich, late‐stage cumulates. Sampling of these oxidized cumulates or interactions between reduced melts and the oxidized material can potentially account for the range of fO2 values observed in the Martian meteorites.  相似文献   

6.
Abstract– The nakhlites contain small proportions of Cu‐Fe‐Ni sulfide minerals; we have studied these sulfides in Northwest Africa (NWA) 998, Nakhla, Governador Valadares, and NWA 817 with optical microscopy, scanning electron microscope, and electron microprobe. Modal abundances of magmatic sulfides, as estimated by image analysis on thin section, are uniformly low (0.02 to 0.05 ± 0.03 vol%), i.e., a factor 5 lower than in shergottites. Sulfides occur within the glassy mesostasis, as composite two‐phase Fe‐Ti oxide‐sulfide grains, intimately associated with interstitial grains or locally enclosed in postcumulus melt inclusions (e.g., Governador Valadares) in olivine. They exhibit a uniform low‐Ni monoclinic pyrrhotite composition ± chalcopyrite. There is a gradation of sulfide grain sizes and textures across the nakhlites flow(s): droplets in NWA 817; resorbed blebs in Governador Valadares; more massive, true intercumulus blebs in Nakhla and NWA 998. These nakhlites also show evidence for sulfide weathering. Hot desert finds (e.g., NWA 998 and NWA 817) show a few percent fracture‐filling iron (oxy) hydroxides of likely terrestrial origin. Original sulfides are 50% altered in our NWA 998 section, with iron (oxy) hydroxides at grain boundaries and as complete pseudomorphs. The compositions of unaltered pyrrhotites are homogeneous, close to that of the monoclinic endmember Fe7S8, and are too sulfur‐rich to have been in chemical equilibrium with the late magmatic redox state fixed by the fayalite‐magnetite‐quartz buffer. Therefore, the compositions of the pyrrhotites must have been altered during the later stages of magmatic crystallization, by assimilation of S‐rich regolith and hydrothermal circulation.  相似文献   

7.
Abstract– Petrological and geochemical analyses of Miller Range (MIL) 03346 indicate that this meteorite originated from the same augitic cumulate layer(s) as the nakhlite Martian meteorites, but underwent rapid cooling prior to complete crystallization. As with the other nakhlites, MIL 03346 contains a secondary alteration assemblage, in this case consisting of iddingsite‐like alteration veins in olivine phenocrysts, Fe‐oxide alteration veins associated with the mesostasis, and Ca‐ and K,Fe‐sulfate veins. We compared the textural and mineralogical compositions of MIL 090030, 090032, and 090136 with MIL 03346, focusing on the composition and Raman spectra of the alteration assemblages. These observations indicate that the meteorites are paired, and that the preterrestrial olivine‐bound alteration assemblages were produced by weakly acidic brine. Although these alteration assemblages resemble similar assemblages in Nakhla, the absence of siderite and halite in the Miller Range nakhlites indicates that the parental alteration brine was comparatively HCO3? depleted, and less concentrated, than that which altered Nakhla. This indicates that the Miller Range nakhlite alteration brine experienced a separate evolutionary pathway to that which altered Nakhla, and therefore represents a separate branch of the Lafayette‐Nakhla evaporation sequence. Thin‐sections cut from the internal portions of these meteorites (away from any fusion crust or terrestrially exposed edge), contain little Ca‐sulfate (identified as gypsum), and no jarosite, whereas thin‐sections with terrestrially exposed edges have much higher sulfate abundances. These observations suggest that at least the majority of sulfate within the Miller Range nakhlites is terrestrially derived.  相似文献   

8.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

9.
We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1–6 Ma range found in previous studies. Three depleted olivine‐phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9–13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the Martian atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio < 0.80, as previously observed in a many shergottites and in various other rare achondrites. This was explained by solar cosmic ray‐produced Ne (SCR Ne) in addition to the commonly found galactic cosmic ray‐produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina‐like meteorite LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in meteorites from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.  相似文献   

10.
The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle‐derived magmas and the crust. We have measured the Cl‐isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine‐phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately ?3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation‐fractional crystallization.  相似文献   

11.
The isotopic composition and abundance of sulfur in extraterrestrial materials are of interest for constraining models of both planetary and solar system evolution. A previous study that included phase‐specific extraction of sulfur from 27 shergottites found the sulfur isotopic composition of the Martian mantle to be similar to that of terrestrial mid‐ocean ridge basalts, the Moon, and nonmagmatic iron meteorites. However, the presence of positive Δ33S anomalies in igneous sulfides from several shergottites, indicating incorporation of atmospherically processed sulfur into the subsurface, complicated this interpretation. The current study expands upon the previous work through analyses of 20 additional shergottites, enabling tighter constraints on the isotopic composition of juvenile Martian sulfur. The updated composition (δ34S = ?0.24 ± 0.05‰, Δ33S = 0.0015 ± 0.0016‰, and Δ36S = 0.039 ± 0.054‰, 2 s.e.m.), representing the weighted mean for all shergottites within the combined population of 47 without significant Δ33S anomalies, strengthens our earlier result. The presence of sulfur isotopic anomalies in igneous sulfides of some meteorites suggests that their parent magmas may have assimilated crustal material. We observed small negative Δ33S anomalies in sulfides from two meteorites, NWA 7635 and NWA 11300. Although negative Δ33S anomalies have been observed in nakhlites and ALH 84001, previous anomalies in shergottites have all shown positive values of Δ33S. Because NWA 7635 has formation age of 2.4 Ga and is much more ancient than shergottites analyzed previously, this finding expands our perspective on the continuity of Martian atmospheric sulfur photochemistry over geologic time.  相似文献   

12.
Abstract— U, Th, and Pb isotopes and rare earth elements (REEs) in individual phosphate grains from martian meteorites Lafayette and Yamato‐000593/000749 were measured using a sensitive high‐resolution ion microprobe (SHRIMP). Observed U‐Pb data of 12 apatite grains from Yamato (Y‐) 000593/000749 are well represented by linear regressions in both “conventional” 2D isochron plots and the 3D U‐Pb plot (total Pb/U isochron), indicating that the formation age of this meteorite is 1.53 ± 0.46 Ga (2σ). On the other hand, the data of nine apatite grains from Lafayette are well represented by planar regression rather than linear regression, indicating that its formation age is 1.15 ± 0.34 Ga (2σ) and that a secondary alteration process slightly disturbed its U‐Pb systematics as discussed in the literature regarding Nakhla. The observed REE abundance patterns of the apatites in Lafayette and Yamato‐000749, normalized to CI chondrites, are characterized by a progressive depletion of heavy REEs (HREEs), a negative Eu anomaly, similarity to each other, and consistency with previously reported data for Nakhla. Considering the extensive data from other radiometric systems such as Sm‐Nd, Rb‐Sr, Ar‐Ar, and trace elements, our results suggest that the parent magmas of the nakhlites, including the newly found Y‐000593/000749, are similar and that their crystallization ages are ?1.3 Ga.  相似文献   

13.
Northwest Africa (NWA) 8657 is an incompatible trace element-enriched, low-Al basaltic shergottite, similar in texture and chemistry to Shergotty, Zagami, and NWA 5298. It is composed of zoned pyroxene, maskelynite, merrillite, and Ti-oxide minerals with minor apatite, silica, and pyrrhotite. Pyroxene grains are characterized by patchy zoning, with pigeonite or augite cores zoned to Fe-rich pigeonite mantles. The cores have rounded morphologies and irregular margins. Combined with the low Ti/Al of the cores, the morphology and chemistry of the pyroxene grains are consistent with initial crystallization at depth (30–70 km) followed by partial resorption en route to the surface. Enriched rare earth element (REE) equilibrium melt compositions and calculated oxygen fugacities (fO2) conditions for pigeonite cores indicate that the original parent melts were enriched shergottite magmas that staged in chambers at depth within the Martian crust. NWA 8657 does not represent a liquid but rather entrained a proportion of pyroxene crystals from magma chambers where fractional crystallization was occurring at depth. Variation between fO2 and bulk-rock (La/Yb)N of the enriched and intermediate shergottites suggests that oxidation conditions and degree of incompatible element enrichment in the source may not be correlated, as thought previously. Shock melt pockets are characterized by an absence of phosphates and oxide minerals. It is likely that these phases were melted during shock. REEs were redistributed during this process into maskelynite and to a lesser extent the shock melt; however, the overall normalized REE profile of the shock melt is like that of the bulk-rock, but at lower absolute concentrations. Overall, shock melting has had a significant effect on the mineralogy of NWA 8657, especially the distribution of phosphates, which may be significant for geochronological applications of this meteorite and other Martian meteorites with extensive shock melt.  相似文献   

14.
Abstract— The newly found meteorite Northwest Africa 6234 (NWA 6234) is an olivine (ol)‐phyric shergottite that is thought, based on texture and mineralogy, to be paired with Martian shergottite meteorites NWA 2990, 5960, and 6710. We report bulk‐rock major‐ and trace‐element abundances (including Li), abundances of highly siderophile elements, Re‐Os isotope systematics, oxygen isotope ratios, and the lithium isotope ratio for NWA 6234. NWA 6234 is classified as a Martian shergottite, based on its oxygen isotope ratios, bulk composition, and bulk element abundance ratios, Fe/Mn, Al/Ti, and Na/Al. The Li concentration and δ7Li value of NWA 6234 are similar to that of basaltic shergottites Zagami and Shergotty. The rare earth element (REE) pattern for NWA 6234 shows a depletion in the light REE (La‐Nd) compared with the heavy REE (Sm‐Lu), but not as extreme as the known “depleted” shergottites. Thus, NWA 6234 is suggested to belong to a new category of shergottite that is geochemically “intermediate” in incompatible elements. The only other basaltic or ol‐phyric shergottite with a similar “intermediate” character is the basaltic shergottite NWA 480. Rhenium‐osmium isotope systematics are consistent with this intermediate character, assuming a crystallization age of 180 Ma. We conclude that NWA 6234 represents an intermediate compositional group between enriched and depleted shergottites and offers new insights into the nature of mantle differentiation and mixing among mantle reservoirs in Mars.  相似文献   

15.
Abstract– The nakhlites, a subgroup of eight clinopyroxenites thought to come from a single geological unit at the Martian surface, show melt inclusions in augite and olivine. In contrast to olivine‐hosted melt inclusions, augite‐hosted melt inclusions are not surrounded by fractures, and are thus considered preferential candidates for reconstructing parent liquid compositions. Furthermore, two types of augite‐hosted melt inclusion have been defined and characterized in four different nakhlites (Northwest Africa [NWA] 817, Nakhla, Governador Valadares, and NWA 998): Type‐I isolated inclusions in augite cores that contain euhedral to subhedral augite, Ti‐magnetite, and pigeonite plus silica‐rich glass and a gas bubble; Type‐II microinclusions that form trails crosscutting host augite crystals. Fast‐heating experiments were performed on selected pristine primary augite‐hosted melt inclusions from these four samples. Of these, only data from Nakhla were considered robust for reconstruction of a nakhlite parental magma composition (NPM). Based upon careful petrographic selection and consideration of iron‐magnesium ratios, our data are used to propose an NPM, which is basaltic (49.1 wt% SiO2), of high Ca/Al (1.95), and K2O‐poor (0.32 wt%). Thermodynamic modeling at an oxygen fugacity one log unit below the QFM buffer using the MELTS and PETROLOG programs implies that Mg‐rich olivine was not a liquidus phase for this composition. Our analysis is used to suggest that olivine megacrysts found in the nakhlites are unlikely to have coprecipitated with augite, and thus may have been introduced during or subsequent to accumulation in the magma chamber, possibly from more evolved portions of the same chamber.  相似文献   

16.
Abstract— Magnetic properties of 26 (of 32) unpaired Martian meteorites (SNCs) are synthesized to further constrain the lithology carrying Martian magnetic crustal sources. Magnetic properties of ultramafic cumulates (i.e., Chassigny, Allan Hills [ALH] 84001) and lherzolitic shergottites (ALH 77005, Lewis Cliff [LEW] 88516) are one or two orders of magnitude too weak to account for the crustal magnetizations, assuming magnetization in an Earth‐like field. Nakhlites and some basaltic shergottites, which are the most magnetic SNCs, show the right intensity. Titanomagnetite is the magnetic carrier in the nakhlites (7 meteorites), whereas in most basaltic shergottites (11 meteorites) it is pyrrhotite. Dhofar (Dho) 378, Los Angeles, and NWA 480/1460 and 2046 are anomalous basaltic shergottites, as their magnetism is mainly due to titanomagnetite. Pyrrhotite should be among the candidate minerals for the magnetized Noachian crust.  相似文献   

17.
Martian meteorites, in particular shergottites, contain darkened olivine (so‐called “brown olivine”) whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO‐rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500–1700 K and shock duration of at least ~90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back‐transformation of most high‐pressure phases. Therefore, in spite of lack of high‐pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.  相似文献   

18.
Northwest Africa (NWA) 7397 is a newly discovered, enriched, lherzolitic shergottite, the third described example of this group. This meteorite consists of two distinct textural lithologies (1) poikilitic—comprised of zoned pyroxene oikocrysts, with chadacrysts of chromite and olivine, and (2) nonpoikilitic—comprised of olivine, low‐Ca and high‐Ca pyroxene, maskelynite, and minor abundances of merrillite, spinel, ilmenite, and pyrrhotite. The constant Ti/Al ratios of pyroxene oikocrysts suggests initial crystallization of the poikilitic lithology at depth (equivalent to pressures of approximately 10 kbar), followed by crystallization of the nonpoikilitic lithology at shallower levels. Oxygen fugacity conditions become more oxidizing during crystallization ranging from fO2 conditions of approximately QFM‐2 to QFM‐0.7. Magma calculated to be in equilibrium with the major rock‐forming minerals is LREE‐enriched relative to depleted or intermediate shergottites and has flat overall profiles. Therefore, we suggest that the parental magma for NWA 7397 had sampled an enriched, oxidized, Martian geochemical source, similar to that of other enriched basaltic and olivine‐phyric shergottites. We present a polybaric formation model for the lherzolitic shergottite NWA 7397, to account for the petrologic constraints. Three successive stages in the development of NWA 7397 are discussed (1) formation of a REE‐enriched parental magma from a distinct Martian mantle reservoir; (2) magma ponding and development of a staging chamber concomitant with initial crystallization of the poikilitic lithology; and (3) magma ascent to the near surface, with entrainment of cumulates from the staging chamber and subsequent crystallization of the nonpoikilitic lithology en route to the surface.  相似文献   

19.
Abstract— 20–25 mg whole rock samples of the nakhlites Lafayette and Nakhla have been analyzed via the 40Ar‐39Ar technique, in part to verify their formation ages, but primarily, in an attempt to determine the timing of aqueous alteration in these martian meteorites. As in previous studies, plateaus in apparent age are observed at about 1300 Ma (1322 ± 10 for Lafayette, 1332 ± 10 and 1323 ± 11 for Nakhla), presumably corresponding to crystallization ages. The plateaus are not entirely flat, perhaps reflecting the effects of recoil during creation of 39Ar in the nuclear irradiation. The first 5–20% of the K‐derived Ar released from all three samples give apparent ages <1300 Ma. Coupled with the fact that chronometric isotopic studies of nakhlites typically show some disturbance, we believe the low temperature pattern represents more recent (than 1300 Ma) formation of martian aqueous alteration products such as iddingsite. No low temperature plateaus are observed. This is consistent with petrographic evidence for multiple formation events, although the lack of low temperature plateaus is far from conclusive. On the other hand, if there was a single time of alteration, we believe that it will be difficult, if not impossible, to determine it using the K‐Ar system.  相似文献   

20.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号