首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The profiles of six photospheric absorption spectral lines (Fei 5250 Å, Fei 5324 Å, Fei 5576 Å, Cai 5590 Å, Cai 6103 Å and Fei 6165 Å), measured in the kernel of a 2N solar flare and in a quiet-Sun area, were compared. The observations were carried out with an echelle spectrograph of the Crimean Astrophysical Observatory. It was shown that, compared to the quiet-Sun profiles, the flare profiles are shallower in the line core and are less steep in the wings. Therefore, measurements of the longitudinal magnetic field made with a magnetograph system which uses the Cai 6103 Å  spectral line, can be underestimated by 18–25% in areas of bright H ribbons of a moderate solar flare. Modeling of the solar photosphere performed by using a synthesis method showed that, in a solar flare, the enhanced core emission seems to be related to heating of the photosphere by the flare, whereas the decrease of the slope of the wings was presumably caused by the inhomogeneity of the photospheric magnetic field.  相似文献   

2.
Bewsher  D.  Parnell  C.E.  Pike  C.D.  Harrison  R.A. 《Solar physics》2003,215(2):217-237
The relative Doppler and non-thermal velocities of quiet-Sun and active-region blinkers identified in Ov with CDS are calculated. Relative velocities for the corresponding chromospheric plasma below are also determined using the Hei line. Ov blinkers and the chromosphere directly below, have a preference to be more red-shifted than the normal transition region and chromospheric plasma. The ranges of these enhanced velocities, however, are no larger than the typical spread of Doppler velocities in these regions. The anticipated ranges of Doppler velocities of blinkers are 10–15 km s–1 in the quiet Sun (10–20 km s–1 in active regions) for Hei and 25–30 km s–1 in the quiet Sun (20–40 km s–1 in active regions) for Ov. Blinkers and the chromosphere below also have preferentially larger non-thermal velocities than the typical background chromosphere and transition region. Again the increase in magnitude of these non-thermal velocities is no greater than the typical ranges of non-thermal velocities. The ranges of non-thermal velocities of blinkers in both the quiet Sun and active regions are estimated to be 15–25 km s–1 in Hei and 30–45 km s–1 in Ov. There are more blinkers with larger Doppler and non-thermal velocities than would be expected in the whole of the chromosphere and transition region. The recently suggested mechanisms for blinkers are revisited and discussed further in light of the new results.  相似文献   

3.
You  Jianqi  Hiei  Eijiro  Li  Hui 《Solar physics》2003,217(2):235-245
After carefully comparing the white-light (5600±00 Å) and the slit-jaw H images (0.5 Å  passband) of the 2N/X20 white-light flare of 16 August 1989, we found that the H counterpart identification of the bright kernels in continuum by Hiei, Nakagomi, and Takuma (1992) was incorrect. Now we come to the conclusion that none of the two white-light kernels has a corresponding bright H area. Moreover, the loop shapes in white-light are also different from those in H. H loops rose more rapidly than white-light loops. However, their height–time variations on the whole are similar. This indicates that the continuum and chromospheric emissions of the flare presumably come from different plasmas, but may be modulated by some mutual factors, such as large-scale magnetic fields. Analysis of the Hei 10830 Å spectra taken simultaneously with the slit-jaw H images shows that the line-center intensity of Hei 10830 Å doesn't have a good correlation with the intensity of nearby continuum, which supports the above conclusions. In addition, the electron density at the white-light loop top estimated from the continuum around 5600 Å  and 10830 Å  is as high as 1012–1013 cm–3.  相似文献   

4.
Data on interstellar extinction are interpreted to imply an identification of interstellar grains with naturally freeze-dried bacteria and algae. The total mass of such bacterial and algal cells in the galaxy is enormous, 1040 g. The identification is based on Mie scattering calculations for an experimentally determined size distribution of bacteria. Agreement between our model calculations and astronomical data is remarkably precise over the wavelength intervals µ–1 < ;–2 < 1.94µ–1 and 2.5µ–1 < ;–1 < 3.0 ;–1. Over the more restricted waveband 4000–5000 Å an excess interstellar absorption is found which is in uncannily close agreement with the absorption properties of phytoplankton pigments. The strongest of the diffuse interstellar bands are provisionally assingned to carotenoid-chlorophyll pigment complexes such as exist in algae and pigmented bacteria. The 2200 Å interstellar absorption feature could be due to degraded cellulose strands which form spherical graphitic particles, but could equally well be due to protein-lipid-nucleic acid complexes in bacteria and viruses. Interstellar extinction at wavelengths <1800 Å could be due to scattering by virus particles.  相似文献   

5.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   

6.
Keenan  F.P.  Mathioudakis  M.  Pinfield  D.J.  Brown  W.A.  Bruner  M.E. 《Solar physics》1999,185(2):289-296
R-matrix calculations of electron impact excitation rates in Nixviii are used to derive theoretical electron-temperature-sensitive emission line ratios involving 3s–4p,3p–4d,3p –4s, and 3d–4f transitions in the 41–53 Å wavelength range. A comparison of these with solar flare observations from a rocket-borne X-ray spectrograph (XSST) reveals generally excellent agreement between theory and experiment (within the experimental and theoretical uncertainties), which provides support for the atomic data adopted in the analysis. However the 3s 2S–4p 2P1/2 line of Nixviii at 41.22 Å appears to be blended with the Fexix 13.74 Å feature observed by XSST in third order. In addition, the measured Nixviii intensity ratio I(3p 2P3/2– 4s 2S)/I(3p 2P1/2–4s 2S)=I(51.02 Å)/I(50.26 Å)=0.56, a factor of 3.8 smaller than the theoretical (temperature and density-insensitive) value of 2.1. The reason for this discrepancy is currently unexplained, but is unlikely to be due to blending of the 50.26 Å line, as the intensity of this feature is consistent with that expected from the other Nixviii lines in the XSST spectrum. Future observations of the Nixviii lines by the Advanced X-ray Astrophysics Facility (AXAF) should allow this problem to be resolved, and may also permit the use of the lines as electron-temperature diagnostics.  相似文献   

7.
An analysis of the longitudinal distribution of gamma rays from SAS-II data has been carried out using the available information on the gas distribution in the Galaxy. The overall distribution of cosmic rays in the galactic plane can be represented by an exponential function in galactocentric distance with a scale length of 8 kpc upto the solar circle and 10 kpc beyond. There is no evidence for a large gradient of the cosmic ray intensity in the outer parts of the Galaxy. The local emissivities of gamma rays in the energy regionsE >100 MeV and 35 MeV<E <100 MeV are (1.73±0.27)×10–25 photon/(cm3 s nH) and (2.40±0.41)×10–25 photon/(cm3 s nH) respectively. The contribution of °-decay gamma rays is 80% forE >100 MeV and 20% at lower energies. The electron spectrum required by this analysis has a power law spectral index of about –2.7 below a few hundred MeV. The observed gas distribution towards the galactic centre would predict a gamma-ray flux larger than observed. It is suggested that the molecular gas in the central region may be in the form of dense coudlets, in which low evergy cosmic rays do not penetrate; in this case the centre should be seen as a strong source only at high energies. An analysis of the radio sky survey map of the Galaxy at 408 MHz shows thatB varies with a scale-length of 40 kpc; no significance can be attached to the apparent deviation from the equipartition of energy densities between cosmic rays and magnetic field. The derived local emissivity is (1.46±0.28)×10–40 W/((m3 Hz), which corresponds toB 5 G. The surface brightness of radio and gamma-ray emissions in the Galaxy decreases from the centre with scale-lengths 6 kpc and 7 kpc respectively. No positive correlation can be noticed with either co-rotation radius or pattern speed, when compared with external spiral galaxies.  相似文献   

8.
Spectral scans of the coma of comet P/Crommelin 1818. I have been obtained in the wavelength range 3200–6500 Å. Strong emission features of CN(3883 Å) and C2 Swan bands (4695, 5165, and 5538 Å) have been identified. Some weak emission features of CH(3890 Å), C3(4050 Å), CN(4200 »), and C2 + CH(4358 ») were also detected. Sodium was found to be absent in this comet. An estimate of CN and C2 abundances has been made and their production rate have been derived.  相似文献   

9.
10.
It was verified that the total number of sunspot groups at certain region on the solar surface for a certain activity cycle can be estimated quite accurately by using the Markov chain approximation method on the total number of spot groups observed on the same region at an earlier activity cycle. Application has been carried out on the observed sunspots on three northern longitude intervals (40–50, 80–90, and 130–140) during the activity cycle 1950–1960 and 1960–1970. The total number of spot groups in these regions for the activity cycle 1960–1970 has been estimated from the observational data of the cycle 1950–1960. A good correlation between the observed and estimated number of spot groups for the activity cycle 1960–1970 has been noted.  相似文献   

11.
Brosius  J.W.  Thomas  R.J.  Davila  J.M.  Thompson  W.T. 《Solar physics》2000,193(1-2):117-129
We used slit spectra from the 18 November 1997 flight of Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS-97) to measure relative wavelength shifts of coronal emission lines as a function of position across NOAA active region 8108. The shifts are measured relative to reference wavelengths derived from spectra of the region's nearby quiet surroundings (not necessarily at rest) because laboratory rest wavelengths for the coronal EUV lines have not been measured to sufficient accuracy for this work. An additional benefit to this approach is that any systematic uncertainties in the wavelength measurements are eliminated from the relative shifts by subtraction. We find statistically significant wavelength shifts between the spatially resolved active region slit spectra and the reference spectrum. For He ii 303.78 Å the maximum measured relative red shift corresponds to a Doppler velocity +13 km s–1, and the maximum relative blue shift corresponds to a Doppler velocity –3 km s–1. For Si x 347.40 Å, Si xi 303.32 Å, Fe xiv 334.17 Å, and Fe xvi 335.40 Å the corresponding maximum relative Doppler velocities are +19 and –14, +23 and –7, +10 and –10, and +13 and –5 km s–1, respectively. The active region appears to be divided into two different flow areas; hot coronal lines are predominantly red-shifted in the northern half and either blue-shifted or nearly un-shifted in the southern half. This may be evidence that material flows up from the southern part of the region, and down into the northern part. Qualitatively similar relative wavelength shifts and flow patterns are obtained with SOHO/CDS spectra.  相似文献   

12.
Kiselev  N. N.  Jockers  K.  Rosenbush  V. K.  Korsun  P. P. 《Solar System Research》2001,35(6):480-495
We present the imaging polarimetry and photometry of Comet C/1996 Q1 (Tabur) obtained on October 10, 1996, with a two-channel focal reducer attached to the 2-m Pik Terskol Observatory telescope through blue (4430/44 Å) and red (6420/26 Å) continuum filters and through a 6620/59 Å filter that isolated the NH2(0.7.0) band. We analyze the 3600–9300 Å long-slit spectrograms of the comet taken on October 5–6, 1996, with the 2.6-m Crimean Astrophysical Observatory telescope. The NH2(0.8.0) 6408 Å emission and an unidentified 6428 Å emission were found to fall within the pass band of the red filter. The blue filter transmits weak unidentified emissions at 4424–4444 Å and partially C2(4360 Å). Correction for the depolarizing effect of molecular emissions resulted in an increase of the dust polarization by 2–4% in the near-nucleus region and by almost a factor of 2 in the outer coma regions. However, the polarization and color differences between different coma regions remained even after correction for the contribution of emissions. We found no dust polarization difference between the gas comet Tabur and the dust comet C/1988 A1 (Liller), which are believed to be fragments of a common parent comet. The NH2coma was found to be elongated perpendicular to the comet radius vector. The causes of the spatial asymmetry in the NH2molecular distribution are yet to be established. We study the evolution of activity and the spatial distribution of dust brightness, polarization, and color in the comet. We consider a taxonomic classification of gas and dust comets according to dust polarization properties. The polarization differences between dust and gas comets at large phase angles are most likely related both to the actual differences in dust and to the effect of molecular emissions, nuclear gas- and dust-production rates and to the evolution of grain properties with distance from the nucleus.  相似文献   

13.
The line blocking is tabulated for 10 Å ( < 6300 Å) or 20 Å ( > 6300 Å) wide intervals. It follows from the spectral averages and the local continuum derived by Neckel and Labs from high-resolution Fourier transform spectra, which had been obtained by J. Brault at Kitt Peak. The internal accuracy (the scatter) is in the order of 0.1%. Significant systematic errors arising from local distortions of the adopted continuum level can be excluded. Larger errors are to be expected only near the Balmer limit, where the localization of the continuum is very ambiguous.  相似文献   

14.
A measurement of the martian planetary heat flow requires the determination of the subsurface temperature gradient, which is affected by surface insolation. I investigate the propagation of thermal disturbances caused by lander shadowing and derive measurement requirements for in situ heat flow experiments. I find that for short term measurements spanning 180 sol, a measurement depth of at least 2 m is needed to guarantee a stable thermal environment directly underneath the lander for Moon-like thermal conductivities of . For extremely large conductivities of , this depth needs to be increased to 4 m, but if the probe can be deployed outside the lander structure, the respective depths can be decreased by 1 m. For long term measurements spanning at least a full martian year heat flow perturbations are smaller than 5% below a depth of 3 m directly underneath the lander. Outside the lander structure, essentially unperturbed measurements may be conducted at depths of 0.5 and 1.5 m for thermal conductivities of 0.02 and , respectively.  相似文献   

15.
Wheatland  M.S.  Litvinenko  Y.E. 《Solar physics》2002,211(1-2):255-274
The observed distribution of waiting times t between X-ray solar flares of greater than C1 class listed in the Geostationary Operational Environmental Satellite (GOES) catalog exhibits a power-law tail (t) for large waiting times (t>10hours). It is shown that the power-law index varies with the solar cycle. For the minimum phase of the cycle the index is =–1.4±0.1, and for the maximum phase of the cycle the index is –3.2±0.2. For all years 1975–2001, the index is –2.2±0.1. We present a simple theory to account for the observed waiting-time distributions in terms of a Poisson process with a time-varying rate (t). A common approximation of slow variation of the rate with respect to a waiting time is examined, and found to be valid for the GOES catalog events. Subject to this approximation the observed waiting-time distribution is determined by f(), the time distribution of the rate . If f() has a power-law form for low rates, the waiting time-distribution is predicted to have a power-law tail (t)–(3+) (>–3). Distributions f() are constructed from the GOES data. For the entire catalog a power-law index =–0.9±0.1 is found in the time distribution of rates for low rates (<0.1hours –1). For the maximum and minimum phases power-law indices =–0.1±0.5 and =–1.7±0.2, respectively, are observed. Hence, the Poisson theory together with the observed time distributions of the rate predict power-law tails in the waiting-time distributions with indices –2.2±0.1 (1975–2001), –2.9±0.5 (maximum phase) and –1.3±0.2 (minimum phase), consistent with the observations. These results suggest that the flaring rate varies in an intrinsically different way at solar maximum by comparison with solar minimum. The implications of these results for a recent model for flare statistics (Craig, 2001) and more generally for our understanding of the flare process are discussed.  相似文献   

16.
The available evidence regarding the disposition and chronology of Pliocene–Pleistocene fluvial terraces, coastal rock flats, raised beaches and lacustrine sediments adjoining the Anti-Atlas coastline of Morocco has been reviewed and supplemented by additional information from our own field reconnaissance. It is thus suggested that the study region has experienced uplift by  130 m since the Mid-Pliocene climatic optimum ( 3.1 Ma), by  90 m since the latest Pliocene ( 2 Ma), and by  45 m since the Mid-Pleistocene Revolution ( 0.9 Ma). Each of these phases of uplift correlates with a phase of global climate change known independently, and it is thus inferred that the observed uplift is being driven by climate through mechanisms such as erosional isostasy and the associated induced lower-crustal flow. Numerical modelling of the observed uplift history indicates that the mobile lower-crustal layer in the study region is  9 km thick, with a temperature at its base of  500 °C. The base of this mobile layer is inferred to be at  24 km depth, the deepest crust consisting of a layer of mafic underplating that does not flow under ambient conditions. The principal landform in the study region, the coastal rock platform at  60 m a.s.l., thus formed during a succession of interglacial marine highstands in the late Early Pleistocene when uplift rates were low. Although control on the ages of young sediments and landforms is currently extremely limited, being dependent on regional correlation schemes rather than on absolute dating, the study region fits the pattern, emerging worldwide, that climate change is driving the systematic growth of topographic relief evident during the Late Cenozoic.  相似文献   

17.
Cluster analysis (a Bayesian iteration procedure) was used to study the space-time distribution of sunspot groups in the time interval from 1965 to 1977. (Data were taken from the Greenwich and Debrecen Heliographic Results.) The distribution proved to be significantly non-random for the 8–10 groups cluster–1 (gr cl–1) level of clustering. Convincing evidence also favours non-random behaviour for other levels of clustering from the lowest (3–4 gr cl–1) up to the highest ( 150 gr cl–1) level. The rotation rate of the non-random pattern is generally slightly lower than the Carrington rate.The 8–10 gr cl–1 level, crudely corresponding to the sunspot nests investigated earlier, was studied in more detail. The cycle- and latitude-averaged rotational rate of the nests is slightly ( 1%) but significantly lower than the Carrington rate. Their differential rotation is strongly reduced: the cycle-averaged rotational rate varies only by 2–3% within the sunspot belt. A slight but significant bimodality is seen in the differential rotation curve: the intermediate latitudes ( 10°–20°) show a somewhat slower rotation than both the equatorial and the higher latitude regions. This might be explained by a time-dependence of the rotation rate coupled with the butterfly diagram.  相似文献   

18.
Thompson  William T.  Brekke  PÅl 《Solar physics》2000,195(1):45-74
The Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory (SOHO) carries out a regular program of measuring the full-disk irradiance using the Normal Incidence Spectrograph (NIS). The full-disk solar spectrum is returned in the wavelength bands 308–379 Å and 513–633 Å, with a spectral resolution between 0.3 and 0.6 Å. A recent modification to the CDS on-board software allows simultaneous moderate resolution monochromatic images to be made of the stronger lines in these wavelength ranges. We report on observations made 23 April 1998, 21 May 1998, and 22 June 1998. A total of 69 monochromatic full-Sun images are extracted from the spectral line data. For the first time, spectrally resolved images of the full Sun in Heii 303.8 Å and Sixi 303.3 Å are presented and compared. Velocity maps of the Sun in singly ionized helium are presented. Correlations of intensity to velocity over a wide range of transition region and coronal temperatures are shown. Lines from Hei to Fexiv show statistical red shifts of 1–7 km s–1 between active regions and quiet Sun areas. Velocity maps of Mgix andx are presented, showing strong upflow and downflow regions associated with active regions, but not correlated with the brightest emission. Changes in line width are also presented in Hei, with discussion of similar features in other lines of comparable temperature. Corrections which need to be applied to CDS/NIS data to extract meaningful velocities and line widths are presented and discussed. The identifications of the lines in the CDS spectrum are examined. The spatial and spectral variation of the background component of the CDS spectrum is examined.  相似文献   

19.
The structure of the outer part of the Galaxy is studied, based upon 21-cm line observations of Hi in the region 288°l310°, –7°b2°.In this longitude range the galactic plane is strongly bend toward negative latitudes.The principal outer structure is a spiral arm which has a pitch angle of 10° and is formed by several concentrations differing in shape and size. There exists also a secondary concentration which could be a split from the previous structure.Possible hypotheses about the origin of the later feature are discussed.  相似文献   

20.
Results of high-dispersion spectroscopy (10 Å mm–1) of the symbiotic star AX Per carried out in the years from 1979 to 1987 are reported. The emission line [FeVII] 6086 consists of a narrow and a broad component; the radial velocity of the narrow one varies according to the photometric period 681.6 days. This variation (K=30.6±1.5 km s–1) seems to be due to the orbital motion of the hot star. The radial velocity of absorption lines varies with an inverse phase dependence and a much smaller amplitude (K=5.6±2 km s–1), which may reflect the orbital motion of the red giant. The variation of the radial velocity of the emission lines of FeII, ect. (K=6.7±1.5 km s–1) might be due to the rotation of the red giant. The profile of H emission line suddenly changed around the phase of the photometric minimum, which could be explained as a result of an eclipse of the emitting region by the red giant. On the other hand, some problems remain open in the behaviour of the radial velocities of H and HeI 5876.The observed results support a binary model of AX Per consisting of a rather massive (3M ) M-type giant and a Main-Sequence star (0.6M ). AX Per seems to be in an early stage of the Case C mass transfer, and the estimated very high mass accretion rate (10–4 M yr–1) is consistent with the theoretical models. The narrow component of the emission line of [FeVII] 6086 might be emitted in radiatively driven polar jets on the hot star of which luminosity is close to the Eddington limit.A new identification as ZrII at 6106.47 Å is proposed for the emission line at 6106 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号