首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
Similarity solutions are obtained for spherical radiation-driven shock waves propagating in a non-uniform atmosphere at rest obeying a density power law. Approximate analytical solutions are also obtained and found to be in good agreement with the numerical solutions. The effect of the parameter characterizing the initial density distribution of the gas on solutions of the flow field is studied in detail. It is also shown analytically that the shock wave propagates as an overdriven detonation.  相似文献   

2.
Two exact solutions of Einstein's field equations of vacuum are presented and investigated. We will regard the term vacuum fluid as the limiting case of scalar field with an almost constant potential. Considering the four velocity of this fluid we find, that in both solutions there is an anisotropic expansion of the cosmic fluid, but the fluid has vanishing vorticity.We investigate whether shear could prevent the transition into an inflationary era in these models, and the effect of shear on a scalar field is also considered. It is found that shear will speed up the rollover of the scalar field in some Bianchi type-VIII models.Possible initial conditions are discussed in light of the group structures of the models.  相似文献   

3.
During star formation, both infall and outflows are present around protostellar cores. Here we show solutions of a self-similar model that study the two flows with only one set of equations. We focus here on the effects of magnetic field and dust on solutions. Unmagnetized solutions have also been found. This shows that magnetic field is not the main driving mechanism of the circulation process. We have found that a reduction of magnetic field produces denser, slower and narrower outflows. When the opacity is less dominated by dust, density increases in the equatorial region, allowing larger accretion rates to occur. The comprehension of massive star formation could be related to this latter effect.  相似文献   

4.
Relativistic cosmological field equations are obtained for a Robertson-Walker space time interacting with viscous fluid and massive scalar field. The cosmological solutions to the field equations are obtained and the nature of the scalar field as well as the viscous fluid are studied. It is found that the solutions obtained are realistic only for a closed Universe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
In a recent Letter to the Editor, Beesham (1986) has claimed that the models based on the Lyra manifold allow a wider class of solutions of the vacuum field equations than models based on a Riemannian manifold. It was also argued that the cosmological term is introduced in an arbitraryad hoc fashion in general relativity.In this note I will show that all the vacuum solutions found by Beesham, can equally well be solutions of the Friedmann equations of vacuum with a cosmological term. All these solutions are well known.  相似文献   

6.
A mechanical design of a fast wide-field telescope with an entrance pupil that is 180 mm diameter, a focal length of 294 mm, and an angular field of view of 10° is described. Original construction solutions have been found for this type of system.  相似文献   

7.
The study of Einstein's field equations describing Robertson-Walker cosmological models with massive scalar field and viscous fluid representing the matter has been made. The problem has been investigated with and without the source density in the wave equation. Corresponding exact solutions of the field equations have been obtained under different physical equations of state: namely, (i) dust distribution, (ii) Zeldovich fluid distribution, (iii) disordered distribution of radiation subject to physically realistic conditions. The physical interpretations of the physically realistic solutions has been investigated. It has been found that physically realistic solutions has been obtained for closed cosmological models only.  相似文献   

8.
Using two- and three-dimensional hydromagnetic simulations for a range of different flows, including laminar and turbulent ones, it is shown that solutions expressing the field in terms of Euler potentials (EP) are in general incorrect if the EP are evolved with an artificial diffusion term. In three dimensions, standard methods using the magnetic vector potential are found to permit dynamo action when the EP give decaying solutions. With an imposed field, the EP method yields excessive power at small scales. This effect is more exaggerated in the dynamic case, suggesting an unrealistically reduced feedback from the Lorentz force. The EP approach agrees with standard methods only at early times when magnetic diffusivity did not have time to act. It is demonstrated that the usage of EP with even a small artificial magnetic diffusivity does not converge to a proper solution of hydromagnetic turbulence. The source of this disagreement is not connected with magnetic helicity or the three-dimensionality of the magnetic field, but is simply due to the fact that the non-linear representation of the magnetic field in terms of EP that depend on the same coordinates is incompatible with the linear diffusion operator in the induction equation.  相似文献   

9.
The Stokes components of He i D3 emission in two quiescent prominences, using full spectral profile measurements, are analyzed to derive vector magnetic fields. Two independently developed schemes, based on the Hanle effect, are used for interpretation. They involve solutions of the statistical equilibrium equations for the He i D3 multiplet, including the effect of coherency and full level crossing, which predict the magnetic field dependence of the observed polarization. Derived magnetic field vector solutions for each pair of linear polarization Stokes profiles corresponding to an observational point in the prominence are, intrinsically, not uniquely determined, and a set of possible solutions is usually obtained. However, mutual consistency of these solutions with those independently predicted by the form of the circular polarized component, allow, in almost all cases, rejection of all solutions of a set except one symmetrical pair. Of such a pair, a unique solution can be determined with a high confidence level by reference to independent potential field information. Field vectors are found usually to be close to horizontal and normal to the prominence surface, but extreme exceptions are found. Field values range from 6 G to 60 G. The derived vectorfield configurations and their magnitudes are briefly discussed relative to these prominences and to different quiescent prominence models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

10.
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. Our method is based on the solution of the relativistic Grad–Shafranov equation, to which Maxwell's equations can be reduced. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher-order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.  相似文献   

11.
The availability of vector-magnetogram sequences with sufficient accuracy and cadence to estimate the temporal derivative of the magnetic field allows us to use Faraday’s law to find an approximate solution for the electric field in the photosphere, using a Poloidal–Toroidal Decomposition (PTD) of the magnetic field and its partial time derivative. Without additional information, however, the electric field found from this technique is under-determined – Faraday’s law provides no information about the electric field that can be derived from the gradient of a scalar potential. Here, we show how additional information in the form of line-of-sight Doppler-flow measurements, and motions transverse to the line-of-sight determined with ad-hoc methods such as local correlation tracking, can be combined with the PTD solutions to provide much more accurate solutions for the solar electric field, and therefore the Poynting flux of electromagnetic energy in the solar photosphere. Reliable, accurate maps of the Poynting flux are essential for quantitative studies of the buildup of magnetic energy before flares and coronal mass ejections.  相似文献   

12.
Friedmann Robertson Walker cosmological models with bulk viscosity are constructed in the scale covariant theory of gravitation. A new class of solutions for the field equations of the model is found by applying variable deceleration parameter. Some physical models of these solutions are briefly discussed in this paper.  相似文献   

13.
Huseyin Cavus   《New Astronomy》2009,14(8):700-707
In this work, some numerical solutions of magnetohydrodynamic equations are investigated in the presence of radial and azimuthal components of magnetic field with the use of previously developed algorithm. In this algorithm, the thin shell approximation and a special separation of variables is used to obtain the radial and latitudinal variations of physical parameters in spherical coordinates. The solutions are obtained via this separation of variables in the components of momentum transfer equation. The analysis yields three important parameters which are the sphericity, density and radial components shape parameters in the latitudinal distributions of physical variables. The magnetic field profile, used here, produces comparable magnetic fluxes found in previous works. There is a considerable change in density with respect to reference model. Other physical parameters also reveal important physical results. It is as well shown that the spherical symmetric distributions of physical parameters are broken for the region of study.  相似文献   

14.
We look for cosmologies with a scalar field (dark energy without cosmological constant), which mimic the standard ΛCDM cosmological model yielding exactly the same large-scale geometry described by the evolution of the Hubble parameter (i.e. photometric distance and angular diameter distance as functions on z). Asymptotic behavior of the field solutions is studied in the case of spatially flat Universe with pressureless matter and separable scalar field Lagrangians; the cases of power-law kinetic term and power-law potential are considered. Exact analytic solutions are found in some special cases. A number of models have the field solutions with infinite behavior in the past or even singular behavior at finite redshifts. We point out that introduction of the cosmological scalar field involves some degeneracy leading to lower precision in determination of Ω m . To remove this degeneracy additional information is needed besides the data on large-scale geometry. The article is published in the original.  相似文献   

15.
For the Robertson-Walker metric for a homogeneous and isotropic universe, I have derived explicit solutions of the Einstein-Yang equation (interior torsion-free solutions for a spin-less ideal fluid) and hence found certain solutions of the Einstein field equation for the radiation-dominated phase of the early universe.  相似文献   

16.
Static spherically-symmetric solutions to the linearized field equations of a generalized scalartensor theory of gravity are derived. The gravitational potential outside such a source is determined; it is found that this potential can have an intermediate range variation. The question of whether such an intermediate range variation would manifest itself in two experiments is addressed.  相似文献   

17.
The continual emergence of magnetic flux in solar active regions suggests that a substantial reservoir of flux is present somewhere beneath the photosphere. It has been proposed that this flux could be stored in an azimuthal field of order 3000 G residing in the lower portion of the convection zone. Such a field may be large enough to substantially influence the dynamics of the convection: linear stability analyses indicate that donut-like convective rolls having azimuthal symmetry might then be preferred to banana cells aligned with the rotation axis. Observational detections of such azimuthal rolls have been claimed.The problem of pattern selection by convection in the presence of rotation and a horizontal magnetic field is examined here in a model system consisting of a planar Boussinesq fluid layer. Nonlinear solutions are obtained numerically. It is found that solutions consisting solely of donut cells can exist even at parameter values at which linear theory suggests that banana cells should be preferred instead. However, when the horizontal field decays below a critical value, banana cells may then grow. This leads to the destruction of the horizontal field and a permanent transition to banana cells.  相似文献   

18.
This paper is devoted to study the effects of electromagnetic on the collapse and expansion of anisotropic gravitating source. For this purpose, we have evaluated the generating solutions of Einstein–Maxwell field equations with spherically symmetric anisotropic gravitating source. We found that a single function generates the various anisotropic solutions. In this case every generating function involves an arbitrary function of time which can be chosen to fit several astrophysical time profiles. Two physical phenomenon occur, one is gravitational collapse and other is the cosmological expanding solution. In both cases electromagnetic field effects the anisotropy of the model. For collapse the anisotropy is increased while for expansion it deceases from maximum value to finite positive value. In case of collapse there exits two horizons like in case of Reissner–Nordström metric.  相似文献   

19.
The object of this paper is to give a new mathematical and physical method of finding explicit analytical interior solutions of the Einstein-Maxwell field equations of a static perfect fluid sphere with charge. In spite of many successful efforts in solving the field equations, the importance of finding meaningful general analytic solutions remains. Our purpose is to obtain the interior solutions of the field equations that they complete the results, which they have been already published in an earlier paper (Dionysiou, 1982; this paper will be referred to hereafter as Paper I). Using our new formulae, we then rederive some known results as particular solutions.  相似文献   

20.
A problem of the structure and spectrum of standing slow magnetosonic waves in a dipole plasmasphere is solved. Both an analytical (in WKB approximation) and numerical solutions are found to the problem, for a distribution of the plasma parameters typical of the Earth's plasmasphere. The solutions allow us to treat the total electronic content oscillations registered above Japan as oscillations of one of the first harmonics of standing slow magnetosonic waves. Near the ionosphere the main components of the field of registered standing SMS waves are the plasma oscillations along magnetic field lines, plasma concentration oscillation and the related oscillations of the gas-kinetic pressure. The velocity of the plasma oscillations increases dramatically near the ionospheric conductive layer, which should result in precipitation of the background plasma particles. This may be accompanied by ionospheric F2 region airglows modulated with the periods of standing slow magnetosonic waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号