首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constrain holographic dark energy (HDE) with time varying gravitational coupling constant in the framework of the modified Friedmann equations using cosmological data from type Ia supernovae, baryon acoustic oscillations, cosmic microwave background radiation and X-ray gas mass fraction. Applying a Markov Chain Monte Carlo (MCMC) simulation, we obtain the best fit values of the model and cosmological parameters within 1σ confidence level (CL) in a flat universe as: $\varOmega_{b}h^{2}=0.0222^{+0.0018}_{-0.0013}$ , $\varOmega_{c}h^{2}=0.1121^{+0.0110}_{-0.0079}$ , $\alpha_{G}\equiv \dot{G}/(HG) =0.1647^{+0.3547}_{-0.2971}$ and the HDE constant $c=0.9322^{+0.4569}_{-0.5447}$ . Using the best fit values, the equation of state of the dark component at the present time w d0 at 1σ CL can cross the phantom boundary w=?1.  相似文献   

2.
We analyzed 186 binary pulsars (BPSRs) in the magnetic field versus spin period (B-P) diagram, where their relations to the millisecond pulsars (MSPs) can be clearly shown. Generally, both BPSRs and MSPs are believed to be recycled and spun-up in binary accreting phases, and evolved below the spin-up line setting by the Eddington accretion rate ( $\dot{M}{\simeq}10^{18}~\mbox{g/s}$ ). It is noticed that most BPSRs are distributed around the spin-up line with mass accretion rate $\dot{M}=10^{16}~\mbox{g/s}$ and almost all MSP samples lie above the spin-up line with $\dot{M}\sim10^{15}~\mbox{g/s}$ . Thus, we calculate that a minimum accretion rate ( $\dot{M}\sim10^{15}~\mbox{g/s}$ ) is required for the MSP formation, and physical reasons for this are proposed. In the B-P diagram, the positions of BPSRs and their relations to the binary parameters, such as the companion mass, orbital period and eccentricity, are illustrated and discussed. In addition, for the seven BPSRs located above the limit spin-up line, possible causes are suggested.  相似文献   

3.
We recently found that the halo of the Milky Way contains a large reservoir of warm-hot gas that accounts for large fraction of the missing baryons from the Galaxy. The average physical properties of this circumgalactic medium (CGM) are determined by combining average absorption and emission measurements along several extragalactic sightlines. However, there is a wide distribution of both, the halo emission measure and the O?vii column density, suggesting that the Galactic warm-hot gaseous halo is anisotropic. We present Suzaku observations of fields close to two sightlines along which we have precise O?vii absorption measurements with Chandra. The column densities along these two sightlines are similar within errors, but we find that the emission measures are different: 0.0025±0.0006 cm?6?pc near the Mrk 421 direction and 0.0042±0.0008 cm?6?pc close to the PKS 2155-304 sightline. Therefore the densities and pathlengths in the two directions must be different, providing a suggestive evidence that the warm-hot gas in the CGM of the Milky Way is not distributed uniformly. However, the formal errors on derived parameters are too large to make such a claim. In the Mrk 421 direction we derive the density of \(1.6^{+2.6}_{-0.8} \times 10^{-4}~\mbox{cm}^{-3}\) and pathlength of \(334^{+685}_{-274}~\mbox{kpc}\) . In the PKS 2155-304 direction we measure the gas density of \(3.6^{+4.5}_{-1.8} \times10^{-4}~\mbox{cm}^{-3}\) and path-length of \(109^{+200}_{-82}~\mbox{kpc}\) . Thus the density and pathlength along these sightlines are consistent with each other within errors. The average density and pathlength of the two sightlines are similar to the global averages, so the halo mass is still huge, over 10 billion solar masses. With more such studies, we will be able to better characterize the CGM anisotropy and measure its mass more accurately. We can then compare the observational results with theoretical models and investigate if/how the CGM structure is related to the larger scale environment of the Milky Way. We also show that the Galactic disk makes insignificant contribution to the observed O?vii absorption; a similar conclusion was also reached by Henley and Shelton (2013) about the emission measure. We further argue that any density inhomogeneity in the warm-hot gas, be it from clumping, from the disk, or from a non-constant density gradient, would strengthen our result in that the Galactic halo path-length and the mass would become larger than what we estimate here. As such, our results are conservative and robust.  相似文献   

4.
We present results based on the systematic analysis of Chandra archive data on the X-ray bright Abell Richness class-I type cluster Abell 1991 with an objective to investigate properties of the X-ray cavities hosted by this system. The unsharp masked image as well as 2-d β model subtracted residual image of Abell 1991 reveals a pair of X-ray cavities and a region of excess emission in the central ~12 kpc region. Both the cavities are of ellipsoidal shape and exhibit an order of magnitude deficiency in the X-ray surface brightness compared to that in the undisturbed regions. Spectral analysis of X-ray photons extracted from the cavities lead to the temperature values equal to $1.77_{-0.12}^{+0.19}~\mathrm{keV}$ for N-cavity and $1.53_{-0.06}^{+0.05}~\mathrm{keV}$ for S-cavity, while that for the excess X-ray emission region is found to be equal to $2.06_{-0.07}^{+0.12}~\mathrm{keV}$ . Radial temperature profile derived for Abell 1991 reveals a positive temperature gradient, reaching to a maximum of 2.63 keV at ~76 kpc and then declines in outward direction. 0.5–2.0 keV soft band image of the central 15′′ region of Abell 1991 reveals relatively cooler three different knot like features that are about 10′′ off the X-ray peak of the cluster. Total power of the cavities is found to be equal to ${\sim}8.64\times10^{43}~\mathrm{erg\,s}^{-1}$ , while the X-ray luminosity within the cooling radius is found to be $6.04 \times10^{43}~\mathrm{erg\,s}^{-1}$ , comparison of which imply that the mechanical energy released by the central AGN outburst is sufficient to balance the radative loss.  相似文献   

5.
The analytical techniques of the Nekhoroshev theorem are used to provide estimates on the coefficient of Arnold diffusion along a particular resonance in the Hamiltonian model of Froeschlé et al. (Science 289:2108–2110, 2000). A resonant normal form is constructed by a computer program and the size of its remainder ||R opt || at the optimal order of normalization is calculated as a function of the small parameter ${\epsilon}$ . We find that the diffusion coefficient scales as ${D \propto ||R_{opt}||^3}$ , while the size of the optimal remainder scales as ${||R_{opt}|| \propto {\rm exp}(1/\epsilon^{0.21})}$ in the range ${10^{-4} \leq \epsilon \leq 10^{-2}}$ . A comparison is made with the numerical results of Lega et al. (Physica D 182:179–187, 2003) in the same model.  相似文献   

6.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

7.
AA Dor is one of only seven known eclipsing binaries consisting of a hot subdwarf star and a low-mass companion. Although AA Dor has been studied in many investigations, a controversy about the nature of its companion persists. Is it a brown dwarf or a low-mass main sequence star? We reanalyse high resolution spectra using metal enhanced LTE model atmospheres. The optical spectra are polluted by reflected light from the companion. Using spectra taken during secondary eclipse, we derive atmospheric parameters consistent with results from the light curve. For the first time we achieve a self-consistent solution that matches all available observations, i.e. the light and radial velocity curves, as well as the atmospheric parameters. The resulting masses $M_{1}=0.510^{+0.125}_{-0.108}\ \mathrm{M}_{\odot}$ and $M_{2}=0.085^{+0.031}_{-0.023}\ \mathrm{M}_{\odot}$ are consistent with the canonical mass of an sdB star and a low-mass main sequence star. However, a brown dwarf companion cannot be excluded.  相似文献   

8.
9.
Semi-relativistic calculations are performed for the photoionization of Fe X (an important coronal ion) from its ground state 3s23p $^{5}(^{2}P^{0}_{3/2})$ and the first two excited states 3s23p $^{5}(^{2}P^{0}_{1/2})$ and 3s3p $^{6}(^{2}S_{1/2})$ using the Breit?CPauli R-matrix method. A lowest 41 state eigenfunction expansion for Fe XI is employed to ensure an extensive treatment of auto ionizing resonances that affect the effective cross-sections. In the present calculations, we have considered all the important physical effects like channel coupling, exchange and short range correlation. The present calculations using the lowest 41 target levels of Fe XI in the LSJ coupling scheme are reported and we expect that the present results should enable more accurate modelling of the emission spectrum of highly excited plasma from the optical to the far UV region.  相似文献   

10.
A popular model of a cometary plasma is hydrogen (H+) with positively charged oxygen (O+) as a heavier ion component. However, the discovery of negatively charged oxygen (O?) ions enables one to model a cometary plasma as a pair-ion plasma (of O+ and O?) with hydrogen as a third ion constituent. We have, therefore, studied the stability of the ion-acoustic wave in such a pair-ion plasma with hydrogen and electrons streaming with velocities $V_{d\mathrm{H}^{+}}$ and V de , respectively, relative to the oxygen ions. We find the calculated frequency of the ion-acoustic wave with this model to be in good agreement with the observed frequencies. The ion-acoustic wave can also be driven unstable by the streaming velocity of the hydrogen ions. The growth rate increases with increasing hydrogen density $n_{\mathrm{H}^{+}}$ , and streaming velocities $V_{d\mathrm{H}^{+}}$ and V de . It, however, decreases with increasing oxygen ion densities $n_{\mathrm{O}^{+}}$ and $n_{\mathrm{O}^{-}}$ .  相似文献   

11.
A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988??C?2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle ( $\overline{\Delta\phi}$ ), mean shear angle of the vector magnetic field ( $\overline{\Delta\psi}$ ), mean absolute vertical current density ( $\overline{|J_{z}|}$ ), mean absolute current helicity density ( $\overline{|h_{\mathrm{c}}|}$ ), absolute twist parameter (|?? av|), mean free magnetic energy density ( $\overline{\rho_{\mathrm{free}}}$ ), effective distance of the longitudinal magnetic field (d E), and modified effective distance (d Em) of each photospheric vector magnetogram. Parameters $\overline{|h_{\mathrm{c}}|}$ , $\overline{\rho_{\mathrm{free}}}$ , and d Em show higher correlations with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters $\overline {\Delta\phi}$ , $\overline{\Delta\psi}$ , $\overline{|J_{z}|}$ , |?? av|, and d E show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.  相似文献   

12.
The restricted three-body problem (R3BP) possesses the property that some classes of doubly asymptotic (i.e., homoclinic or heteroclinic) orbits are limit members of families of periodic orbits, this phenomenon has been known as the “blue sky catastrophe” termination principle. A similar case occurs in the restricted four body problem for the collinear equilibrium point $L_{2}$ L 2 . In the restricted four body problem with primaries in a triangle relative equilibrium, we show that the same phenomenon observed in the R3BP occurs. We prove that there exists a critical value of the mass parameter $\mu _{b}$ μ b such that for $\mu =\mu _{b}$ μ = μ b a Hamiltonian Hopf bifurcation takes place. Moreover we show that for $\mu >\mu _{b}$ μ > μ b the stable and unstable manifolds of $L_{2}$ L 2 intersect transversally and the spectrum corresponds to a complex saddle. This proves that Henrard’s theorem applies at least for $\mu $ μ close to $\mu _{b}$ μ b . In particular there exists a family of periodic orbits having the homoclinic orbit as a limit.  相似文献   

13.
Using γ-ray data detected by Fermi Large Area Telescope (LAT) and multi-wave band data for 35 TeV blazars sample, we have studied the possible correlations between different broad band spectral indices ( $\alpha_{\rm r.ir}$ , $\alpha_{\rm{r.o}}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm r.\gamma}$ , $\alpha_{\rm{ir.o}}$ , $\alpha_{\rm ir.x}$ , $\alpha_{\rm ir.\gamma}$ , $\alpha_{\rm o.x}$ , $\alpha_{\rm o.\gamma}$ , $\alpha_{\rm r.x}$ , $\alpha_{\rm x.\gamma}$ ) in all states (average/high/low). Our results are as follows: (1) For our TeV blazars sample, the strong positive correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm{r.o}}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.x}$ , between $\alpha_{\rm r.ir}$ and $\alpha_{\rm r.\gamma}$ in all states (average/high/low); (2) For our TeV blazars sample, the strong anti-correlations were found between $\alpha_{\rm r.ir}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm ir.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm{r.o}}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\mathrm{ir.o}}$ and $\alpha_{\rm o.\gamma}$ , between $\alpha_{\rm r.x}$ and $\alpha_{\rm x.\gamma}$ , between $\alpha_{\rm ir.x}$ and $\alpha_{\rm x.\gamma}$ in all states (average/high/low). The results suggest that the synchrotron self-Compton radiation (SSC) is the main mechanism of high energy γ-ray emission and the inverse Compton scattering of circum-nuclear dust is likely to be a important complementary mechanism for TeV blazars. Our results also show that the possible correlations vary from state to state in the same pair of indices, Which suggest that there may exist differences in the emitting process and in the location of the emitting region for different states.  相似文献   

14.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

15.
We obtain an approximate solution $\tilde{E}=\tilde{E}(e,M)$ of Kepler’s equation $E-e\sin (E)=M$ for any $e\in [0,1)$ and $M\in [0,\pi ]$ . Our solution is guaranteed, via Smale’s $\alpha $ -theory, to converge to the actual solution $E$ through Newton’s method at quadratic speed, i.e. the $n$ -th iteration produces a value $E_n$ such that $|E_n-E|\le (\frac{1}{2})^{2^n-1}|\tilde{E}-E|$ . The formula provided for $\tilde{E}$ is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near $e=1$ and $M=0$ , where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region $[0,1)\times [0,\pi ]$ if only rational functions are allowed in each branch.  相似文献   

16.
In this paper we study the periodic orbits of the Hamiltonian system with the Armburster-Guckenheimer-Kim potential and its $\mathcal{C}^{1}$ non-integrability in the sense of Liouville-Arnold.  相似文献   

17.
A basic model for the formation of non-equilibrium rotational energy distributions is described for reactive, homo-polar diatomic molecules and ions in the interstellar medium. Kinetic models were constructed to calculate the rotational populations of $\mathrm{C}_{2}^{+}$ under the conditions it would experience in the diffuse interstellar medium. As the non-polar ion reacts with molecular hydrogen, but not atomic hydrogen, the thermalization of a hot nascent rotational population will be arrested by chemical reaction when the H2 density begins to be significant. Populations that deviate strongly from the local thermodynamic equilibrium are predicted for $\mathrm{C}_{2}^{+}$ in environments where it may be detectable. Consequences of this are discussed and a new optical spectrum is calculated.  相似文献   

18.
In this work, we explore a sample of 362 flat-spectrum radio quasars (FSRQs) to investigate the jet formation. We find that the fundamental plane for our FSRQs can be expressed as $L_{\rm 5~GHz}\propto M_{\rm bh}^{-0.19}L_{\rm 2~keV}^{1.08}$ . We also find that the 5?GHz luminosities are tightly related to both black hole mass and Eddington ratio, which is established as $L_{\rm 5~GHz}\propto M_{\rm bh}^{0.67}(L_{\rm bol}/ L_{\rm EDD})^{1.32}$ .  相似文献   

19.
We investigate the dynamics of two satellites with masses $\mu _s$ and $\mu '_s$ orbiting a massive central planet in a common plane, near a first order mean motion resonance $m+1{:}m$ (m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles $\phi = (m+1)\lambda ' -m\lambda - \varpi $ and $\phi '= (m+1)\lambda ' -m\lambda - \varpi '$ , where $\lambda $ and $\varpi $ are the mean longitude and longitude of periapsis of $\mu _s$ , respectively, and where the primed quantities apply to $\mu '_s$ . We consider the special case where $\mu _s \rightarrow 0$ (restricted problem). The symmetry between the two angles $\phi $ and $\phi '$ is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance $D$ between the CER and LER, and a forcing parameter $\epsilon _L$ that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for $D=0$ the system is integrable, for $D$ of order unity, it exhibits prominent chaotic regions, while for $D$ large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.  相似文献   

20.
We present the results of polarimetric observations of the icymoons of Uranus (Ariel, Titania, Oberon, and Umbriel) performed at the 6-m BTA telescope of the SAO RAS with the SCORPIO-2 focal reducer within the phase angle range of $0_.^ \circ 06 - 2_.^ \circ 37$ . The parameters of the negative polarization branch (referred to the scattering plane) are obtained in the V filter: for Ariel the maximum branch depth of P min ≈ ?1.4% is reached at the phase angle of α min ≈ 1°; for Titania P min ≈ ?1.2%, $\alpha _{\min } \approx 1_.^ \circ 4$ ; for Oberon P min ≈ ?1.1%, $\alpha _{\min } \approx 1_.^ \circ 8$ . For Umbriel the polarization minimum was not reached: for the last measurement point at $\alpha _{\min } \approx 2_.^ \circ 4$ , polarization amounts to ?1.7%. The declining P min and shifting αmin towards larger phase angles correlate with a decrease of the geometric albedo of the Uranian moons. There is no longitudinal dependence of polarization for the moons within the observational errors which indicates a similarity in the physical properties of the leading and trailing hemispheres. The phase-angle dependences of polarization for the major moons of Uranus are quite close to those observed in the group of small trans-Neptunian objects (Ixion, Huya, Varuna, 1999 DE9, etc.), which are characterized by a large gradient of negative polarization, about ?1% per degree in the phase-angle range of $0_.^ \circ 1 - 1^ \circ$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号