首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have detected the Sunyaev–Zel'dovich (SZ) increment at 850 μm in two galaxy clusters (Cl 0016+16 and MS 1054.4−0321) using the Submillimetre Common User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. Fits to the isothermal β model yield a central Compton y parameter of  (2.2 ± 0.7) × 10−4  and a central 850-μm flux of  Δ I 0= 2.2 ± 0.7 mJy beam−1  in Cl 0016. This can be combined with decrement measurements to infer   y = (2.38 ±0.360.34) × 10−4  and   v pec= 400±19001400 km s−1  . In MS 1054 we find a peak 850-μm flux of  Δ I 0= 2.0 ± 1.0 mJy beam−1  and   y = (2.0 ± 1.0) × 10−4  . To be successful such measurements require large chop throws and non-standard data analysis techniques. In particular, the 450-μm data are used to remove atmospheric variations in the 850-μm data. An explicit annular model is fit to the SCUBA difference data in order to extract the radial profile, and separately fit to the model differences to minimize the effect of correlations induced by our scanning strategy. We have demonstrated that with sufficient care, SCUBA can be used to measure the SZ increment in massive, compact galaxy clusters.  相似文献   

2.
Cold collapse of a cluster composed of small identical clumps, each of which is in virial equilibrium, is considered. Since the clumps have no relative motion with respect to each other initially, the cluster collapses under its own gravity. At the first collapse of the cluster, most of the clumps are destroyed, but some survive. In order to find the condition for the clumps to survive, we made a systematic study in two-parameter space: the number of the clumps N c and the size of the clump r v . We obtained the condition N c ≫ 1 and n k  ≥ 1, where n k is related to r v and the initial radius of the cluster R ini through the relation R ini/ r v  = 2 N ( n k +5)/6c. A simple analytical argument supports the numerical result. This n k corresponds to the index of the power spectrum of the density fluctuation in the cosmological hierarchical clustering, and thus our result may suggest that in the systems smaller than 2/Ω h 2)Mpc, the first violent collapse is strong enough to sweep away all the substructures that exist before the collapse.  相似文献   

3.
When the total angular momentum of a binary system   J tot= J orb+ J spin  is at a certain critical (minimum) value, a tidal instability occurs which eventually forces the stars to merge into a single, rapidly rotating object. The instability occurs when   J orb= 3 J spin  , which in the case of contact binaries corresponds to a minimum mass ratio   q min≈  0.071–0.078. The minimum mass ratio is obtained under the assumption that stellar radii are fixed and independent. This is not the case with contact binaries where, according to the Roche model, we have   R 2= R 2( R 1, a , q )  . By finding a new criterion for contact binaries, which arises from  d J tot= 0  , and assuming   k 21≠ k 22  for the component's dimensionless gyration radii, a theoretical lower limit   q min= 0.094–0.109  for overcontact degree   f = 0–1  is obtained.  相似文献   

4.
Theoretical electron density sensitive line ratios   R 1– R 6  of Si  x soft X-ray emission lines are presented. We found that these line ratios are sensitive to electron density n e, and the ratio R 1 is insensitive to electron temperature T e. For reliable determination of the electron density of laboratory and astrophysical plasmas, atomic data, such as electron impact excitation rates, are very important. Our results reveal that the discrepancy of the line ratios from different atomic data calculated with the distorted wave (DW) approximation and the R-matrix method is up to 19 per cent at   n e= 2 × 108 cm−3  . We applied the theoretical intensity ratio R 1 to the Low Energy Transmission Grating Spectrometer (LETGS) spectrum of the solar-like star Procyon. By comparing the observed value (1.29) with the theoretical calculation, the derived electron density n e is  2.6 × 108 cm−3  , which is consistent with that derived from  (C  v < 8.3 × 108 cm−3)  . When the temperature structure of the Procyon corona is taken into account, the derived electron density increases from   n e= 2.6 × 108  to  2.8 × 108 cm−3  .  相似文献   

5.
We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on   w 0, w 1  roughly by 30 per cent, making more appealing multicolour surveys based on photometric redshifts. We find that a 200-deg2 spectroscopic survey reaching   z ≈ 3  can constrain   w 0, w 1  to within  Δ w 0= 0.21, Δ w 1= 0.26  , to  Δ w 0= 0.39, Δ w 1= 0.54  using photometric redshifts with an absolute uncertainty of 0.02, and to  Δ w 0= 0.43, Δ w 1= 0.66  with an uncertainty of 0.04. In the scalar field case, we show that the slope n of the inverse power-law potential for dark energy can be constrained to  Δ n = 0.26  (spectroscopic redshifts) or  Δ n = 0.40  (photometric redshifts), i.e. better than with future ground-based supernovae surveys or cosmic microwave background data.  相似文献   

6.
We present an analysis of four off-axis ROSAT Position Sensitive Proportional Counter (PSPC) observations of the Perseus cluster of galaxies (Abell 426). We detect the surface brightness profile to a radius of 80 arcmin (∼2.4 h−150 Mpc) from the X-ray peak. The profile is measured in various sectors and in three different energy bands. First, a colour analysis highlights a slight variation of N H over the region, and cool components in the core and in the eastern sector. We apply the β-model to the profiles from different sectors and present a solution to the, so-called, β-problem. The residuals from an azimuthally-averaged profile highlight extended emission both in the east and in the west, with estimated luminosities of about 8 and 1 ×1043 erg s−1, respectively. We fit several models to the surface brightness profile, including the one obtained from the Navarro, Frenk &38; White potential. We obtain the best fit with the gas distribution described by a power law in the inner, cooling region and a β-model for the extended emission. Through the best-fitting results and the constraints from the deprojection of the surface brightness profiles, we define the radius where the overdensity inside the cluster is 200 times the critical value, r 200, at 2.7 h−150 Mpc. Within 2.3  h−150 Mpc (0.85 r 200), the total mass in the Perseus cluster is 1.2 × 1015 M and its gas fraction is about 30 per cent.  相似文献   

7.
The moderately fast Nova Oph 2007 reached maximum brightness on 2007 March 28 at   V = 8.52, B − V =+1.12, V − R C=+0.76, V − I C=+1.59  and   R C− I C=+0.83  , after fast initial rise and a pre-maximum halt lasting a week. Decline times were   t V 2= 26.5, t B 2= 30, t V 3= 48.5  and   t B 3= 56.5  d. The distance to the nova is   d = 3.7 ± 0.2 kpc  , the height above the Galactic plane is   z = 215 pc  , the reddening is   E ( B − V ) = 0.90  and the absolute magnitude at maximum is   M max V =−7.2  and   M max B =−7.0  . The spectrum four days before maximum resembled a F6 supergiant, in an agreement with broad-band colours. It later developed into that of a standard 'Fe  ii '-class nova. Nine days past maximum, the expansion velocity estimated from the width of Hα emission component was  ∼730 km s−1  , and the displacement from it of the principal and diffuse-enhanced absorption systems was ∼650 and  1380 km s−1  , respectively. Dust probably formed and disappeared during the period from 82 to 100 d past maximum, causing (at peak dust concentration) an extinction of  Δ B = 1.8  mag and an extra  Δ E ( B − V ) = 0.44  reddening.  相似文献   

8.
The neighbouring lines a 6D5/2– x 6Po3/2 (1272.617 Å) and a 6D5/2– w 2Po3/2 (1272.657 Å) have been observed in the UV spectrum of χ Lupi to be of comparable intensity. The latter, Δ S  = 2, transition would be expected to be very weak. The two upper states should display negligible mixing. We give a detailed, quantitative discussion of how the two upper states are in fact strongly mixed through their mixing with 3d6(3D)4p 4Po3/2, and hence we explain the relative strengths of the two UV lines.  相似文献   

9.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

10.
We show how the continuity equation can be used to determine pattern speeds in the Milky Way Galaxy (MWG). This method, first discussed by Tremaine & Weinberg in the context of external galaxies, requires projected positions, ( l , b ), and line-of-sight velocities for a spatially complete sample of relaxed tracers. If the local standard of rest (LSR) has a zero velocity in the radial direction ( u LSR), then the quantity that is measured is  Δ V ≡Ωp R 0- V LSR  , where Ωp is the pattern speed of the non-axisymmetric feature, R 0 is the distance of the Sun from the Galactic centre and V LSR is the tangential motion of the LSR, including the circular velocity. We use simple models to assess the reliability of the method for measuring a single, constant pattern speed of either a bar or spiral in the inner MWG. We then apply the method to the OH/IR stars in the ATCA/VLA OH 1612-MHz survey of Sevenster et al., finding  Δ V =252±41 km s-1,  if   u LSR=0  . Assuming further that   R 0=8 kpc  and   V LSR=220 km s-1,  this gives  Ωp=59±5 km s-1 kpc-1  with a possible systematic error of perhaps 10 km s−1 kpc−1. The non-axisymmetric feature for which we measure this pattern speed must be in the disc of the MWG.  相似文献   

11.
When the total angular momentum of a binary system is at a critical (minimum) value, a tidal instability occurs (Darwin's instability), eventually forcing the stars to merge into a single, rapidly rotating object. The instability sets in at some critical separation which in the case of contact binaries corresponds to a minimum mass ratio depending on dimensionless gyration radius k 1. If one considers   n = 3  polytrope (fully radiative primary with  Γ1= 4/3  ),   k 21= 0.075  and   q min≈ 0.085–0.095  . There appears to be, however, some W UMa-type binaries with q values very close, if not below these theoretical limits, implying that primary in these systems is probably more centrally condensed. We try to solve the discrepancy between theory and observations by considering rotating polytropes. We show by deriving and solving a modified Lane–Emden equation for   n = 3  polytrope that including the effects of rotation does increase the central concentration and could reduce   q min  to as low as 0.070–0.074, more consistent with the observed population.  相似文献   

12.
We construct analytically stationary global configurations for both aligned and logarithmic spiral coplanar magnetohydrodynamics (MHD) perturbations in an axisymmetric background MHD disc with a power-law surface mass density  Σ0∝ r −α  , a coplanar azimuthal magnetic field   B 0∝ r −γ  , a consistent self-gravity and a power-law rotation curve   v 0∝ r −β  , where v 0 is the linear azimuthal gas rotation speed. The barotropic equation of state  Π∝Σ n   is adopted for both MHD background equilibrium and coplanar MHD perturbations where Π is the vertically integrated pressure and n is the barotropic index. For a scale-free background MHD equilibrium, a relation exists among  α, β, γ  and n such that only one parameter (e.g. β) is independent. For a linear axisymmetric stability analysis, we provide global criteria in various parameter regimes. For non-axisymmetric aligned and logarithmic spiral cases, two branches of perturbation modes (i.e. fast and slow MHD density waves) can be derived once β is specified. To complement the magnetized singular isothermal disc analysis of Lou, we extend the analysis to a wider range of  −1/4 < β < 1/2  . As an illustrative example, we discuss specifically the  β= 1/4  case when the background magnetic field is force-free. Angular momentum conservation for coplanar MHD perturbations and other relevant aspects of our approach are discussed.  相似文献   

13.
We have observed the Sunyaev–Zel'dovich (SZ) effect in a sample of five moderate-redshift clusters with the Ryle Telescope, and used them in conjunction with X-ray imaging and spectral data from ROSAT and ASCA to measure the Hubble constant. This sample was chosen with a strict X-ray flux limit using both the Bright Cluster Sample and the Northern ROSAT All-Sky Survey (RASS) cluster catalogues to be well above the surface brightness limit of the RASS, and hence to be unbiased with respect to the orientation of the cluster. This controls a major potential systematic effect in the SZ/X-ray method of measuring H 0. Taking the weighted geometric mean of the results and including the main sources of error, namely the noise in the SZ measurement, the uncertainty in the X-ray temperatures and the unknown ellipticity and substructure of the clusters, we find   H 0= 59+10−9 (random)+8−7(systematic) km s−1 Mpc−1  assuming a standard cold dark matter model with  ΩM= 1.0, ΩΛ= 0.0  or   H 0= 66+11−10 +9−8 km  s−1 Mpc−1  if  ΩM= 0.3, ΩΛ= 0.7  .  相似文献   

14.
correlator of the galaxy density field Q 21 is examined from the point of view of biasing. It is shown that, to leading order, it depends on two biasing parameters b b 2, and on q 21, the underlying cumulant correlator of the mass. As the skewness Q 3 has analogous properties, the slope of the correlation function −γ, Q 3 and Q 21 uniquely determine the bias parameter on a particular scale to be b  = γ/6( Q 21 −  Q 3), when working in the context of gravitational instability with Gaussian initial conditions. Thus on large scales, easily accessible with the future Sloan Digital Sky Survey and the 2 Degree Field Survey, it will be possible to extract b b 2 from simple counts-in-cells measurements. Moreover, the higher order cumulants, Q N , successively determine the higher order biasing parameters. From these it is possible to predict higher order cumulant correlators as well. Comparison of the predictions with the measurements will provide internal consistency checks on the validity of the assumptions in the theory, most notably perturbation theory of the growth of fluctuations by gravity and Gaussian initial conditions. Since the method is insensitive Ω, it can be successfully combined with results from velocity fields, which determine Ω0.6/b, to measure the total density parameter in the Universe.  相似文献   

15.
We study the distribution function (DF) of dark matter particles in haloes of mass range  1014–1015 M  . In the numerical part of this work we measure the DF for a sample of relaxed haloes formed in the simulation of a standard Λ cold dark matter (ΛCDM) model. The DF is expressed as a function of energy E and the absolute value of the angular momentum L , a form suitable for comparison with theoretical models. By proper scaling we obtain the results that do not depend on the virial mass of the haloes. We demonstrate that the DF can be separated into energy and angular momentum components and propose a phenomenological model of the DF in the form     . This formulation involves three parameters describing the anisotropy profile in terms of its asymptotic values (β0 and  β  ) and the scale of transition between them ( L 0). The energy part   f E ( E )  is obtained via inversion of the integral for spatial density. We provide a straightforward numerical scheme for this procedure as well as a simple analytical approximation for a typical halo formed in the simulation. The DF model is extensively compared with the simulations: using the model parameters obtained from fitting the anisotropy profile, we recover the DF from the simulation as well as the profiles of the dispersion and kurtosis of radial and tangential velocities. Finally, we show that our DF model reproduces the power-law behaviour of phase-space density   Q =ρ( r )/σ3( r )  .  相似文献   

16.
A deep   K s   -band photometric catalogue of galaxies at the core of the rich, nearby Norma cluster (ACO3627) is presented. The survey covers about  45 × 45 arcmin2  (slightly less than 1/3 Abell radius), which corresponds to  ∼0.8  h −270 Mpc2  at the adopted distance  ( v CMB/ H 0)  of  70  h −170 Mpc  of this cluster. The survey is estimated to be complete to a magnitude of     . This extends into the dwarf regime, 6 mag below     . The catalogue contains 390 objects, 235 of which are classified as likely or definite galaxies and 155 as candidate galaxies. The   K s   -band luminosity function (LF) is constructed from the photometric sample, using a spectroscopic subsample to correct for fore and background contamination. We fit a Schechter function with a characteristic magnitude of     and faint-end slope of  α=−1.26 ± 0.10  to the data. The shape of the LF is similar to those found in previous determinations of the cluster LF, in both optical and near-infrared. The Schechter parameters agree well with those of recent field LFs, suggesting that the shape of both the bright-end and the faint-end slopes are relatively insensitive to environment.  相似文献   

17.
We present and discuss optical, near-infrared and H  i measurements of the galaxy Markarian 1460 at a distance of 19 Mpc in the Ursa Major Cluster. This low-luminosity ( M B =−14) galaxy is unusual because (i) it is blue ( B − R =0.8) and has the spectrum of an H  ii galaxy, (ii) it has a light profile that is smooth and well fitted by an r 1/4 and not an exponential function at all radii larger than the seeing, and (iii) it has an observed central brightness of about μ B =20 mag arcsec−2 , intermediate between those of elliptical galaxies (on the bright μ B side) and normal low-luminosity dwarf irregular (on the low μ B side) galaxies. No other known galaxy exhibits all these properties in conjunction. On morphological grounds this galaxy looks like a normal distant luminous elliptical galaxy, since the Fundamental Plane tells us that higher luminosity normal elliptical galaxies tend to have lower surface-brightnesses. Markarian 1460 has 2×107 M of H  i and a ratio M (H  i )/ L B of 0.2, which is low compared to the typical values for star-forming dwarf galaxies. From the high surface-brightness and r 1/4 profile, we infer that the baryonic component of Markarian 1460 has become self-gravitating through dissipative processes. From the colours, radio continuum, H  i and optical emission line properties, and yet smooth texture, we infer that Markarian 1460 has had significant star formation as recently as ∼1 Gyr ago but not today.  相似文献   

18.
We investigate the influence of the ionization of helium on the low-degree acoustic oscillation frequencies in model solar-type stars. The signature in the oscillation frequencies characterizing the ionization-induced depression of the first adiabatic exponent γ is a superposition of two decaying periodic functions of frequency ν, with 'frequencies' that are approximately twice the acoustic depths of the centres of the He  i and He  ii ionization regions. That variation is probably best exhibited in the second frequency difference  Δ2ν n ,  l ≡ν n −1,  l − 2ν n ,  l n +1,  l   . We show how an analytic approximation to the variation of γ leads to a simple representation of this oscillatory contribution to Δ2ν which can be used to characterize the γ variation, our intention being to use it as a seismic diagnostic of the helium abundance of the star. We emphasize that the objective is to characterize γ, not merely to find a formula for Δ2ν that reproduces the data.  相似文献   

19.
We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, ξJ, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S J  = ξ J J −12. We compare our analytic results with N -body simulations, which turn out to be in very good agreement up to scales where σ ≈ 1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.  相似文献   

20.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号