首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an analysis of all the events (around 400) of coronal shocks for which the shock-associated metric type IIs were observed by many spectrographs during the period April 1997– December 2000. The main objective of this analysis is to give evidence for the type IIs related to only flare-blast waves, and thus to find out whether there are any type II-associated coronal shocks without mass ejections. By carefully analyzing the data from multi-wavelength observations (Radio, GOES X-ray, Hα, SOHO/LASCO and SOHO/EIT-EUV data), we have identified only 30 events for which there were actually no reports of CMEs. Then from the analysis of the LASCO and EIT running difference images, we found that there are some shocks (nearly 40%, 12/30) which might be associated with weak and narrow mass ejections. These weak and narrow ejections were not reported earlier. For the remaining 60% events (18/30), there are no mass ejections seen in SOHO/LASCO. But all of them are associated with flares and EIT brightenings. Pre-assuming that these type IIs are related to the flares, and from those flare locations of these 18 cases, 16 events are found to occur within the central region of the solar disk (longitude ≤45^∘). In this case, the weak CMEs originating from this region are unlikely to be detected by SOHO/LASCO due to low scattering. The remaining two events occurred beyond this longitudinal limit for which any mass ejections would have been detected if they were present. For both these events, though there are weak eruption features (EIT dimming and loop displacement) in the EIT images, no mass ejection was seen in LASCO for one event, and a CME appeared very late for the other event. While these two cases may imply that the coronal shocks can be produced without any mass ejections, we cannot deny the strong relationship between type IIs and CMEs.  相似文献   

2.
We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.  相似文献   

3.
Andrews  M.D. 《Solar physics》2001,204(1-2):179-196
The period of 10–14 July 2000 saw a large number of energetic solar events ending with a very energetic flare that was associated with a large solar energetic particle event and a fast halo coronal mass ejection (CME) that produced the largest geomagnetic disturbance since 1989. This paper tries to summarize the complex coronal activity observed during this period, in order to establish a background for a number of papers in this topical issue. The GOES X-ray data are presented. Data animations of observations from EIT and LASCO C2 and C3 are presented on the accompanying CD-ROM. The observations around the time of the three X-class flares are considered. EIT observations of the Bastille Day flare show coronal brightening followed by dimming. LASCO had good data coverage for all three events. For one of the flares, no coronal response was seen. The other two flares are associated with halo CMEs. The timing suggests that the start of the flares and CMEs are simultaneous to approximately 30 min. Analysis of the LASCO and EIT images following the Bastille Day flare show the arrival of energetic particles at SOHO at approximately 10:41 UT on 14 July. Individual features of these CMEs have been tracked and the height–time plots used to estimate the dynamics of the CMEs. The initial speed and deceleration of the halo CMEs estimated from the fitting of height–time plots are compared with the in-situ observations at L1. The three flares are identified as the solar sources of three shocks observed at 1 AU. Finally, it is stressed that global heliospheric effects during periods of exceptional activity should consider a cumulative scenario rather than events in isolation.  相似文献   

4.
Dryer  M.  Andrews  M. D.  Aurass  H.  DeForest  C.  Galvin  A. B.  Garcia  H.  Ipavich  F. M.  Karlický  M.  Kiplinger  A.  Klassen  A.  Meisner  R.  Paswaters  S. E.  Smith  Z.  Tappin  S. J.  Thompson  B. J.  Watari  S. I.  Michels  D. J.  Brueckner  G. E.  Howard  R. A.  Koomen  M. J.  Lamy  P.  Mann  G.  Arzner  K.  Schwenn  R. 《Solar physics》1998,181(1):159-183
The first X-class flare in four years occurred on 9 July 1996. This X2.6/1B flare reached its maximum at 09:11 UT and was located in active region 7978 (S10° W30°) which was an old-cycle sunspot polarity group. We report the SOHO LASCO/EIT/MDI and SOONSPOT observations before and after this event together with Yohkoh SXT images of the flare, radio observations of the type II shock, and GOES disk-integrated soft X-ray flux during an extended period that included energy build-up in this active region.The LASCO coronagraphs measured a significant coronal mass ejection (CME) on the solar west limb beginning on 8 July at about 09:53 UT. The GOES 8 soft X-ray flux (0.1–0.8 nm) had started to increase on the previous day from below the A-level background (10-8 W m-2). At the start time of the CME, it was at the mid-B level and continued to climb. This CME is similar to many events which have been seen by LASCO and which are being interpreted as disruption of existing streamers by emerging flux ropes.LASCO and EIT were not collecting data at the time of the X-flare due to a temporary software outage. A larger CME was in progress when the first LASCO images were taken after the flare. Since the first image of the 'big' CME was obtained after the flare's start time, we cannot clearly demonstrate the physical connection of the CME to the flare. However, the LASCO CME data are consistent with an association of the flare and the CME. No eruptive filaments were observed during this event.We used the flare evidence noted above to employ in real time a simplified Shock-Time-of-Arrival (STOA) algorithm to estimate the arrival of a weak shock at the WIND spacecraft. We compare this prediction with the plasma and IMF data from WIND and plasma data from the SOHO/CELIAS instrument and suggest that the flare - and possibly the interplanetary consequences of the 'big' CME - was the progenitor of the mild, high-latitude, geomagnetic storm (daily sum of Kp=16+, Ap=8) on 12 July 1996. We speculate that the shock was attenuated enroute to Earth as a result of interaction with the heliospheric current/plasma sheet.presently at High Altitude Observatory, Boulder, CO80309, U.S.A.presently at Naval Research Laboratory, Washington DC, 20375, U.S.A.  相似文献   

5.
Plunkett  S.P.  Vourlidas  A.  Šimberová  S.  Karlický  M.  Kotrč  P.  Heinzel  P.  Kupryakov  Yu.A.  Guo  W.P.  Wu  S.T. 《Solar physics》2000,194(2):371-391
Coronal mass ejections (CMEs) are frequently associated with erupting prominences near the solar surface. A spectacular eruption of the southern polar crown prominence was observed on 2 June 1998, accompanied by a CME that was well-observed by the LASCO coronagraphs on SOHO. The prominence was observed in its quiescent state and was followed throughout its eruption by the SOHO EIT and later by LASCO as the bright, twisted core of the CME. Ground-based H observations of the prominence were obtained at the Ondejov Observatory in the Czech Republic. A great deal of fine structure was observed within the prominence as it erupted. The prominence motion was found to rotate about its axis as it moved outward. The CME contained a helical structure that is consistent with the ejection of a magnetic flux rope from the Sun. Similar structures have been observed by LASCO in many other CMEs. The relationship of the flux rope to other structures in the CME is often not clear. In this event, the prominence clearly lies near the trailing edge of the structure identified as a flux rope. This structure can be observed from the onset of the CME in the low corona all the way out to the edge of the LASCO field of view. The initiation and evolution of the CME are modeled using a fully self-consistent, 3D axisymmetric, MHD code.  相似文献   

6.
We have analyzed a set of 25 interacting events which are associated with the DH type II bursts. These events are selected from the Coronal Mass Ejections (CMEs) observed during the period 1997–2010 in SOHO/LASCO and DH type IIs observed in Wind/WAVES. Their pre and primary CMEs from nearby active regions are identified using SOHO/LASCO and EIT images and their height–time diagrams. Their interacting time and height are obtained, and their associated activities, such as, flares and Solar Energetic Particles (>10 pfu) are also investigated. Results from the analysis are: primary CMEs are much faster than the pre-CMEs, their X-ray flares are also stronger (X- and M-class) compared to the flares (C- and M-class) of pre-CMEs. Most of the events (22/25) occurred during the period 2000–2006. From the observed width and speed of pre and primary CMEs, it is found that the pre-CMEs are found to be less energetic than the primary CMEs. While the primary CMEs are tracked up to the end of LASCO field of view (30 Rs), most of the pre-CMEs can be tracked up to <26 Rs. The SEP intensity is found to be related with the integrated flux of X-ray flares associated with the primary CMEs for nine events originating from the western region.  相似文献   

7.
Since January 1996, the Solar and Heliospheric Observatory (SOHO)has been providing unprecedented views of the extended solar coronato heliocentric distances of up to 32 solar radii. During the past threeyears we carried out studies of the morphology and dynamical evolutionof various structures in the solar corona using two instruments on boardSOHO: the Large Angle Spectrometric Coronagraph (LASCO) and the ExtremeUltraviolet Imaging Telescope (EIT). We have applied advanced image resolutionenhancement techniques to explore in detail the characteristics of thesmall-scale structures and/or the low contrast structures in the solarcorona. We describe here the results from these high-angular resolutionstudies, including of the kinematics of several Coronal Mass Ejections andpolar jets.  相似文献   

8.
In this study, the possibility that coronal mass ejections (CMEs) may be observed in neutral Lyman-α emission was investigated. An observing campaign was initiated for SWAN (Solar Wind ANisotropies), a Lyman-α scanning photometer on board the Solar and Heliospheric Observatory (SOHO) dedicated to monitoring the latitude distribution of the solar wind from its imprints on the interstellar sky background. This was part of SOHO Joint Observing Program (JOP) 159 and was an exploratory investigation as it was not known how, or even if, CMEs interact with the solar wind and interstellar neutral hydrogen at this distance (≈60 and 120 R S). The study addresses the lack of methods for tracking CMEs beyond the field-of-view of current coronagraphs (30 R S). In our first method we used LASCO, white-light coronagraphs on SOHO, and EIT, an extreme ultraviolet imaging telescope also on SOHO, to identify CME candidates which, subject to certain criteria, should have been observable in SWAN. The criteria included SWAN observation time and location, CME position angle, and extrapolated speed. None of the CME candidates that we discuss were identified in the SWAN data. For our second method we analyzed all of the SWAN data for 184 runs of the observing campaign, and this has yielded one candidate CME detection. The candidate CME appears as a dimming of the background Lyman-α intensity representing ≈10% of the original intensity, moving radially away from the Sun. Multiple candidate CMEs observed by LASCO and EIT were found which may have caused this dimming. Here we discuss the campaign, data analysis technique and statistics, and the results.  相似文献   

9.
Lyons  M.A.  Simnett  G.M. 《Solar physics》1999,186(1-2):363-379
Observations are reported of two multiple CME events which were detected on 2–3 June 1997 and 9–10 June 1998, using the LASCO instrument on board SOHO. Each event consists of a group of four related CMEs which emerge from progressively higher latitudes over a time period of approximately 16 hours. In both cases there is on-disk activity visible in EIT EUV images which involves bright emission along the south polar crown filament and there is also ejection of mass from other regions of the corona during the time period of each event. We present a multi-wavelength view of these events (i.e. white-light, H, EUV and, in the case of the 2–3 June 1997 event, soft X-ray), which suggest that ejection of mass from one point in the corona can lead to a destabilization of a previously stable structure and the further ejection of mass from different regions of the corona, in a systematic way. The observations also show that the CME phenomenon is not always a localised event but can occur on a global level; and that complex CME activity can arise at relatively quiet-Sun periods as evidenced by the lack of significant X-ray flares or radio signatures.  相似文献   

10.
Delannée  C.  Aulanier  G. 《Solar physics》1999,190(1-2):107-129
We study a flare which occurred on 3 November 1997 at 10:31 UT in the vicinity of a parasitic polarity of AR 8100. Using SOHO/EIT 195 Å observations, we identify the brightening of thin transequatorial loops connecting AR 8100 and AR 8102, and dimmings located between the two active regions. Difference images highlight the presence of a loop-like structure rooted near the flare location usually called an EIT wave. The coronal magnetic field derived from potential extrapolations from a SOHO/MDI magnetogram shows that the topology is complex near the parasitic polarity. There, a `bald patch' (defined as the locations where the magnetic field is tangent to the photosphere) is present. We conclude that the flare was a `bald patch flare'. Moreover, the extrapolation confirms that there is a large coronal volume filled with transequatorial field lines interconnecting AR 8100 and AR 8102, and overlaying the bald patch. We show that the dimmings are located at the footpoints of these large field lines, which can be also related to the thin bright loops observed during the flare. As this event was related to a coronal mass ejection (CME) observed by SOHO/LASCO, we propose that the observed dimmings are due to a decrease in plasma density during the opening of the transequatorial loops connecting both ARs. We propose a scenario where these large field lines are in fact pushed up by the opening of low-lying sheared field lines forming the bald patch. We finally discuss how the fast opening of these field lines can produce the brightening near the footpoints of the separatrix, observed as an `EIT wave'.  相似文献   

11.
We have analyzed the data for more than 12900 coronal mass ejections (CMEs) which were obtained by SOHO/LASCO during the period of 1996-2007. The online CME catalogue contains all major CMEs detected by LASCO C2 and C3 coronagraphs. Basically we determine the CME speeds from the linear and quadratic fits to the height-time measurements. It is found that linear (constant speed) fit is preferable for 90% of the CMEs. The distribution of speeds of CMEs in solar cycle 23 is presented along with those obtained by others. As expected, the speeds decrease in the decay phase of the cycle 23. There is an unusual drop in speed in the year 2001 and an abnormal increase in speed in the year 2003 due to the high concentration of CMEs, X-class soft X-ray flares, solar energetic particle (SEP) events and interplanetary shocks observed during October-November period called Halloween events.  相似文献   

12.
Willson  Robert F. 《Solar physics》2000,197(2):399-419
Very Large Array (VLA) observations of the Sun at 91 and 400 cm wavelength have been used to investigate the radio signatures of EUV heating events and coronal mass ejections (CMEs) detected by SOHO and TRACE. Our 91 cm observations show the onset of Type I noise storm emission about an hour after an EUV ejection event was detected by EIT and TRACE. The EUV event also coincided with the estimated start time of a CME detected by the LASCO C2 coronagraph, suggesting an association between the production of nonthermal particles and evolving plasma-magnetic field structures at different heights in the corona. On another day, our VLA 400 cm observations reveal weak, impulsive microbursts that occurred sporadically throughout the middle corona. These low-brightness-temperature (T b=0.7–22×106 K) events may be weak Type III bursts produced by beams of nonthermal electrons which excite plasma emission at a height where the local plasma frequency or its first harmonic equals the observing frequency of 74 MHz. For one microburst, the emission was contained in two sources separated by 0.7 R 0, indicating that the electron beams had access to widely-divergent magnetic field lines originating at a common site of particle acceleration. Another 400 cm microburst occurred in an arc-like source lying at the edge of EUV loops that appeared to open outward into the corona, possibly signaling the start of a CME. In most instances the 400 cm microbursts were not accompanied by detectable EUV activity, suggesting that particles that produce the microbursts were independently accelerated in the middle corona, perhaps as the result of some quasi-continuous, large-scale process of energy release.  相似文献   

13.
For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called “EIT waves”) has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory. In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.  相似文献   

14.
We explore the link between solar energetic particles (SEPs) observed at 1 AU and large-scale disturbances propagating in the solar corona, named after the Extreme ultraviolet Imaging Telescope (EIT) as EIT waves, which trace the lateral expansion of a coronal mass ejection (CME). A comprehensive search for SOHO/EIT waves was carried out for 179 SEP events during Solar Cycle 23 (1997?–?2006). 87 % of the SEP events were found to be accompanied by EIT waves. In order to test if the EIT waves play a role in the SEP acceleration, we compared their extrapolated arrival time at the footpoint of the Parker spiral with the particle onset in the 26 eastern SEP events that had no direct magnetic connection to the Earth. We find that the onset of proton events was generally consistent with this scenario. However, in a number of cases the first near-relativistic electrons were detected too early. Furthermore, the electrons had in general only weakly anisotropic pitch-angle distributions. This poses a problem for the idea that the SEPs were accelerated by the EIT wave or in any other spatially confined region in the low corona. The presence of weak electron anisotropies in SEP events from the eastern hemisphere suggests that transport processes in interplanetary space, including cross-field diffusion, play a role in giving the SEPs access to a broad range of helio-longitudes.  相似文献   

15.
Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14, 2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associ- ated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.  相似文献   

16.
We have investigated properties such as speed, angular width, location, acceleration and occurrence rate of narrow CMEs (defined as having angular width ≤20°) observed during 1996–2007 by SOHO/LASCO. The results obtained are compared with those of normal CMEs (angular width >20°) from the same time interval to find whether there are any real differences between the two populations. Our study of 3464 narrow CMEs from the online SOHO/LASCO, CME catalogue leads us to conclude that (1) the fraction of narrow CMEs during solar minimum is 38% and during solar maximum 19%, (2) during solar maximum narrow CMEs are generally faster than normal CMEs, (3) the maximum speed of narrow CMEs is much smaller than that of the normal CMEs, (4) during solar maximum narrow CMEs appear at all latitudes similar to normal CMEs, (5) narrow and normal CMEs have unequal deceleration and (6) the occurrence rate of narrow CMEs remain constant after 1998 until the beginning of 2006 while the normal CMEs occurrence rate seems to follow solar cycle variation until 2004. Thus narrow CMEs and normal CMEs have some differences, in disagreement with previous studies.  相似文献   

17.
A large set of coronal mass ejections (CMEs, 3463) has been selected to study their periodic oscillations in speed in the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) field of view. These events, reported in the SOHO/LASCO catalog in the period of time 1996?–?2004, were selected based on having at least 11 height–time measurements. This selection criterion allows us to construct at least ten-point speed–distance profiles and evaluate kinematic properties of CMEs with a reasonable accuracy. To identify quasi-periodic oscillations in the speed of the CMEs a sinusoidal function was fitted to speed–distance profiles and the speed–time profiles. Of the considered events 22 % revealed periodic velocity fluctuations. These speed oscillations have on average amplitude equal to \(87~\mbox{km}\,\mbox{s}^{-1}\) and period \(7.8 R _{\odot}/241~\mbox{min}\) (in distance/time). The study shows that speed oscillations are a common phenomenon associated with CME propagation implying that all the CMEs have a similar magnetic flux-rope structure. The nature of oscillations can be explained in terms of magnetohydrodynamic (MHD) waves excited during the eruption process. More accurate detection of these modes could, in the future, enable us to characterize magnetic structures in space (space seismology).  相似文献   

18.
We have analyzed the long-term evolution of two active regions (ARs) from their emergence through their decay using observations from several instruments on board SoHO (MDI, EIT and LASCO) and Yohkoh/SXT. We have computed the evolution of the relative coronal magnetic helicity combining data from MDI and SXT with a linear force-free model of the coronal magnetic field. Next, we have computed the injection of helicity by surface differential rotation using MDI magnetic maps. To estimate the depletion of helicity we have counted all the CMEs of which these ARs have been the source, and we have evaluated their magnetic helicity assuming a one to one correspondence with magnetic clouds with an average helicity contain. When these three values (variation of coronal magnetic helicity, injection by differential rotation and ejection via CMEs) are compared, we find that surface differential rotation is a minor contributor to the helicity budget since CMEs carry away at least 10 times more helicity than the one differential rotation can provide. Therefore, the magnetic helicity flux needed in the global balance should come from localized photospheric motions that, at least partially, reflect the emergence of twisted flux tubes. We estimate that the total helicity carried away in CMEs can be provided by the end-to-end helicity of the flux tubes forming these ARs. Therefore, we conclude that most of the helicity ejected in CMEs is generated below the photosphere and emerges with the magnetic flux.  相似文献   

19.
Coronal Mass Ejections (CMEs) are challenging objects to detect using automated techniques, due to their high velocity and diffuse, irregular morphology. A necessary step to automating the detection process is to first remove the subjectivity introduced by the observer used in the current, standard, CME detection and tracking method. Here we describe and demonstrate a multiscale edge detection technique that addresses this step and could serve as one part of an automated CME detection system. This method provides a way to objectively define a CME front with associated error estimates. These fronts can then be used to extract CME morphology and kinematics. We apply this technique to a CME observed on 18 April 2000 by the Large Angle Solar COronagraph experiment (LASCO) C2/C3 and a CME observed on 21 April 2002 by LASCO C2/C3 and the Transition Region and Coronal Explorer (TRACE). For the two examples in this work, the heights determined by the standard manual method are larger than those determined with the multiscale method by ≈10% using LASCO data and ≈20% using TRACE data.  相似文献   

20.
Berghmans  D.  Clette  F. 《Solar physics》1999,186(1-2):207-229
On 13 May 1998, the Extreme-Ultraviolet Imaging Telescope (EIT, on board SOHO) has produced a unique image sequence operating in 'shutterless mode' (SOHO JOP 80). In JOP 80, EIT is the lead instrument, followed by several space-born instruments (SXT, TRACE, MDI, CDS, SUMER), as well as two observatories on the ground (in La Palma and Sac Peak). The target of the campaign was a relatively small but rapidly evolving active region (AR 8218). For the EIT contribution, a 15 s cadence was achieved in the Fexii bandpass at 195 Å by leaving EIT's shutter open for 1 h and operating the CCD in frame-transfer mode. In this paper, we start the analysis of the huge data set, by making an inventory of the transients observed in the EIT image sequence. Besides scatter plots of duration, size and radiative output of the detected EUV brightenings, we discuss in full detail the morphology and evolution of several typical events. These transients range from a B3.5 flare producing a large plasma flow along pre-existing loops, to EUV versions of active region transient brightenings as previously observed by SXT on board Yohkoh. In addition, a new class of weaker footpoint brightenings is discussed that produce wave-like disturbances propagating along quasi-open field lines. This new class of propagating disturbances extends the wide variety of transient phenomena that we discovered in the EIT data, and makes the potential for inter-instrumental studies of the JOP 80 data all the more exciting. We stress the necessity of such forthcoming studies to reach an instrument-independent classification of small-scale solar transients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号