首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   

2.
We propose in this paper an interacting holographic dark energy (IHDE) model in chameleon–tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the scalar field coupling matter Lagrangian in the model rather than being inserted into the formalism as an external source for the interaction. The correspondence between the tachyon field and the holographic dark energy (HDE) densities allows to reconstruct the tachyon scalar field and its potential in a flat FRW universe. The model can show the accelerated expansion of the universe and satisfies the observational data.  相似文献   

3.
The aim of this work is to show that, contrary to popular belief, galaxy clusters are not expected to be self-similar, even when the only energy sources available are gravity and shock-wave heating. In particular, we investigate the scaling relations between mass, luminosity and temperature of galaxy groups and clusters in the absence of radiative processes. Theoretical expectations are derived from a polytropic model of the intracluster medium and compared with the results of high-resolution adiabatic gasdynamical simulations. It is shown that, in addition to the well-known relation between the mass and concentration of the dark matter halo, the effective polytropic index of the gas also varies systematically with cluster mass, and therefore neither the dark matter nor the gas profiles are exactly self-similar. It is remarkable, though, that the effects of concentration and polytropic index tend to cancel each other, leading to scaling relations whose logarithmic slopes roughly match the predictions of the most-basic self-similar models. We provide a phenomenological fit to the relation between polytropic index and concentration, as well as a self-consistent scheme to derive the non-linear scaling relations expected for any cosmology and the best-fitting normalizations of the M – T , L – T and F – T relations appropriate for a Λ cold dark matter universe. The predicted scaling relations reproduce observational data reasonably well for massive clusters, where the effects of cooling and star formation are expected to play a minor role.  相似文献   

4.
In this paper we consider a correspondence between the holographic dark energy density and interacting generalized cosmic Chaplygin gas energy density in flat FRW universe. Then, we reconstruct the potential of the scalar field which describe the generalized cosmic Chaplygin cosmology. In the special case we obtain time-dependent energy density and study cosmological parameters. We find stability condition of this model which is depend on cosmic parameter.  相似文献   

5.
In this letter, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology.  相似文献   

6.
The effect of background dynamics of the universe on formation of large scale structures in the framework of Modified Newtonian Dynamics (MOND) is investigated. A spherical collapse model is used for modeling the formation of the structures. This study is done in two extreme cases: (i) assuming a universe with a low-density baryonic matter without any cold dark matter and dark energy; (ii) a dark energy dominated universe with baryonic matter, without cold dark matter. We show that for the case (ii) the structures virialize at lower redshifts with larger radii compared to the low-density background universe. The dark energy slow downs the collapse of the structures. We show that our results are compatible with recent simulations of the structure formation in MOND.  相似文献   

7.
Stability analysis of agegraphic dark energy in Brans-Dicke theory is presented in this paper. We constrain the model parameters with the observational data and thus the results become broadly consistent with those expected from experiment. Stability analysis of the model without best fitting shows that universe may begin from an unstable state passing a saddle point and finally become stable in future. However, with the best fitted model, There is no saddle intermediate state. The agegraphic dark energy in the model by itself exhibits a phantom behavior. However, contribution of cold dark matter on the effective energy density modifies the state of the universe from phantom phase to quintessence one. The statefinder diagnosis also indicates that the universe leaves an unstable state in the past, passes the LCDM state and finally approaches the sable state in future.  相似文献   

8.
In this paper, we study the new holographic dark energy model in the framework of modified f(R) Horava-Lifshitz Gravity. We apply correspondence scheme to construct model the in underlying scenario using power-law form of scale factor. To explore accelerated expansion of the universe, some well-known cosmological parameters (equation of state parameter and squared speed of sound) and cosmological planes (ω Λ \(\omega'_{\varLambda}\) and statefinder) are discussed for reconstructed model. It is interesting to conclude that these parameters represent phantom behavior of the universe with stable configuration. also, the cosmological planes show compatible results with recent observations for accelerated expansion of the universe.  相似文献   

9.
The present work deals with a spatially homogeneous and anisotropic Kantowski-Sachs space time filled with two minimally interacting fluids; dark matter and a hypothetical anisotropic fluid as the holographic dark energy components. To obtain an exact solution of the Einstein’s field equations, we used the assumption of linearly varying deceleration parameter. We have investigated geometric and kinematic properties of the model and the role of the anisotropic holographic dark energy in the evolution of the Kantowski-Sachs universe. Under the suitable condition, it is observed that the anisotropy parameter of the universe and the skewness parameter of the holographic dark energy approaches to zero for large cosmic time and the universe can achieve flatness for some particular moments throughout its entire lifetime. Results show that the coincidence parameter $( \Re= \frac{\rho_{\varLambda}}{\rho_{M}} )$ increases with increasing time and a big rip type future singularity will occur for this model. We have also applied the statefinder diagnostics method to study the behavior of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. Since in this model, the universe has a finite life time and passes through a significant time when the dark energy and the matter energy densities are roughly comparable, so considering $\frac{1}{ \Re_{0}} <\Re < \Re_{0}$ , where ?0 is any fixed ratio, we have calculated the fraction of total life time of the universe when the universe passes through the coincidental stage for this future singularity. The results are found to be consistent with recent cosmological observations.  相似文献   

10.
Investigation of dark energy models in the presence of scalar fields are attracting several kinds of research because they play a vital role in the discussion of a new scenario of accelerated expansion of the universe. In this paper, we obtain an exact plane-symmetric dark energy cosmological model in the presence of an attractive massive scalar field by solving Einstein field equations using some physically relevant conditions. We have obtained all the cosmological parameters corresponding to the model. We have also presented a physical discussion of our model using a graphical representation of these parameters. The results exhibit an expanding and accelerating dark energy model of the universe, which are consistent with modern cosmological observations.  相似文献   

11.
Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a cause of the accelerated expansion it cannot totally outcast the contribution of dark energy in causing the accelerated expansion. In one case the dark energy is found to be the sole cause of the accelerated expansion. The dark energy contained in these models come out to be of the ΛCDM type and quintessence type comparable to the modern observations. Some of the models originated with a big bang, the dark energy being prevalent inside the universe before the evolution of this era. One of the models predicts big rip singularity, though at a very distant future. It is interestingly found that the interaction between the dark energy and the other part of the universe containing different matters is enticed and enhanced by the gauge function ϕ(t) here.  相似文献   

12.
A new model of dark energy namely “ghost dark energy model” has recently been suggested to interpret the positive acceleration of cosmic expansion. The energy density of ghost dark energy is proportional to the hubble parameter. In this paper we perform the statefinder diagnostic tool for this model both in flat and non-flat universe. We discuss the dependency of the evolutionary trajectories in sr and qr planes on the interaction parameter between dark matter and dark energy as well as the spatial curvature parameter of the universe. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we plot the evolutionary trajectories in sr and qr planes for the best fit values of the cosmological parameters and compare the interacting ghost model with other dynamical dark energy models. We show that the evolutionary trajectory of ghost dark energy in statefinder diagram is similar to holographic dark energy model. Finally, it has been shown that from the viewpoint of statefinder analysis, the ghost dark energy model has a better agreement with observations compare with holographic and new holographic dark energy models.  相似文献   

13.
We study some holographic dark energy models in chameleonic Brans-Dicke field gravity by taking interaction between the dark energy components in FRW universe. Firstly, we take the holographic dark energy model with Granda-Oliveros cut-off and discuss interacting as well as non-interacting cases. Secondly, we consider the holographic dark energy with both power-law as well as logarithmic corrections using Hubble scale as infrared cut-off in interacting case only. We describe the evolution of some cosmological parameters for these holographic dark energy models. It is concluded that the phantom crossing can be achieved more easily in the presence of chameleonic Brans-Dicke field as compared to simple Brans-Dicke as well as Einstein’s gravity. Also, the deceleration parameter strongly confirms the accelerated expanding behavior of the universe.  相似文献   

14.
In this paper, we have presented an FLRW universe containing two-fluids (baryonic and dark energy), by assuming the deceleration parameter as a linear function of the Hubble function. This results in a time-dependent deceleration parameter (DP) having a transition from past decelerating to the present accelerating universe. In this model, dark energy (DE) interacts with dust to produce a new law for the density. As per our model, our universe is at present in a phantom phase after passing through a quintessence phase in the past. The physical importance of the two-fluid scenario is described in various aspects. The model is shown to satisfy current observational constraints such as recent Planck results. Various cosmological parameters relating to the history of the universe have been investigated.  相似文献   

15.
Recent astrophysical measurements strongly suggest the existence of a missing energy component dubbed dark energy that is responsible for the current accelerated expansion of the universe.A new class of modified gravity theory is introduced which yields a universe accelerating in time and dominated by dark energy.The new modified gravity model constructed here concurrently includes a Gauss-Bonnet invariant term,barotropic fluid with a time-dependent equation of state parameter,a Coleman-Weinberg(CW) potenti...  相似文献   

16.
17.
In a four dimensional manifold formalism we study the evolutionary behavior as well as the ultimate fate of the universe, in the course of which the contribution of dark energy in these phases are investigated. At one stage we get a situation (a condition) where the dark energy contained dominates other types of energies available in this universe. In the model universes we obtain here the dark energy is found to be of ΛCDM and quintessence types-which bear testimony to being real universes. In one of the cases where the equation of state between the fluid pressure and density is of the type of the van der Waals equation, it is found that our universe may end in dust. And, also, it is seen that the behavior of the deceleration parameter is almost compatible with the recent observation.  相似文献   

18.
Here we consider our universe as homogeneous spherically symmetric FRW model and analyze the thermodynamics of this model of the universe in scalar-tensor theory. Assuming the first law of thermodynamics validity of the generalized second law of thermodynamics (GSLT) at the event horizon is examined in both the cases when the universe is filled with perfect fluid and the holographic dark energy.  相似文献   

19.
The recently discovered accelerated expansion of the universe is of current interest in theoretical research on the evolution of the universe. The cause of this behavior is presumably the presence of dark energy, which has been estimated to form up to 70% of the universe and generates a “repulsive force.” In this paper a cosmological model is constructed which takes the dark energy into account in a Jordan-Brans-Dicke tensor-scalar model with a dominant, nonminimally coupled scalar field in the presence of a cosmological scalar. The radiation dominant epoch is discussed. __________ Translated from Astrofizika, Vol. 51, No. 1, pp. 151–159 (February 2008).  相似文献   

20.
We investigate the background dynamics when dark energy is coupled to dark matter in the universe described by loop quantum cosmology. We consider dark energy of the form modified Chaplygin gas. The dynamical system of equations is solved numerically and a stable scaling solution is obtained. It henceforth resolves the famous cosmic coincidence problem in modern cosmology. The statefinder parameters are also calculated to classify this dark energy model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号